Curriculum Analysis
 Algebra II

What new content moved into the Algebra I curriculum?

- Determine the effects on the graph of the parent function $f(x)=x$ when $f(x)$ is replaced by $a f(x), f(x)+d, f(x-c)$, and $f(b x)$ for specific values of a, b, c, and d. A(3)(E)
- Determine the effects on the graph of the parent function $f(x)=x^{2}$ when $f(x)$ is replaced by af(x),f(x)+d,f(x-c), and f(bx) for specific values of a, b, c and $d . A(7)(C)$

What student expectations in Algebra II may be affected by the change in curriculum?

- Determine the effect on the graph of $f(x)=\sqrt{ } x$ when $f(x)$ is replaced by $a f(x), f(x)+d, f(b x)$, and $f(x-c)$ for specific positive and negative values of a, b, c, and $d .2 \mathrm{~A}(4)(\mathrm{C})$
- Determine the effects on the key attributes on the graphs of $f(x)=b^{x}$ and $f(x)=\log _{b}(x)$, where b is 2,10 , and e when $f(x)$ is replaced by af(x), $f(x)+d$, and $f(x-c)$ for specific positive and negative real values of a, c, and d. 2A(5)(A)
- Analyze the effects on the graphs of $f(x)=x^{3}$ and $f(x)={ }^{3} \sqrt{ } x$ when $f(x)$ is replaced by af(x), $f(b x), f(x-c)$, and $f(x)+d$ for specific positive and negative real values of a, b, c, and d. 2A(6)(A)
- Analyze the effect on the graph of $f(x)=1 / x$ when $f(x)$ is replaced by af(x), $f(b x), f(x-c)$, and $f(x)+d$ for specific positive and negative real values of a, b, c, and $d .2 \mathrm{~A}(6)(\mathrm{G})$
- Using technology, formulate quadratic and square root equations given a table of data. 2A(4)(E)
- Analyze data to select the appropriate model from among linear, quadratic, and exponential models. 2A(8)(A)
- Using technology, use regression methods to write linear, quadratic, and exponential functions from a given set of data. 2A(8)(B)
- Predict and make decisions and critical judgments from a given set of data using linear, quadratic, and exponential models. 2A(8)(C)
- Write equations of quadratic functions given the vertex and another point on the graph, write the equation in vertex form $\left(f(x)=a(x-h)^{2}+k\right)$, and rewrite the equation from vertex form to standard form $\left(f(x)=a x^{2}+b x+c\right) . A(6)(B)$
- Write quadratic functions when given real solutions and graphs of their related equations. A(6)(C)
- Graph quadratic functions on the coordinate plane and use the graph to identify key attributes, if possible, including x-intercept, y-intercept, zeros, maximum value, minimum value, vertex, and the equation of the axis of symmetry. $A(7)(A)$
- Identify terms of arithmetic and geometric sequences when the sequences are given in function form using recursive processes. A(12)(C)
- Write a formula for the $n^{\text {th }}$ term of arithmetic and geometric sequences, given the value of several of their terms. $A(12)(D)$
- Write the quadratic function given three specified points in the plane. 2A(4)(A)
- Write the equation of a parabola using given attributes, including vertex, focus, directrix, axis of symmetry, and direction of opening. 2A(4)(B)
- Transform a quadratic function $f(x)=a x^{2}+b x+c$ to the form $f(x)=a(x-h)^{2}+k$ to identify the different attributes of $f(x) .2 \mathrm{~A}(4)(\mathrm{D})$
- Formulate exponential and logarithmic equations that model real-world situations, including exponential relationships written in recursive notation. $2 \mathrm{~A}(5)(\mathrm{B})$
- Analyze data to select the appropriate model from among linear, quadratic, and exponential models. $2 \mathrm{~A}(8)(\mathrm{A})$
- Determine the quotient of a polynomial of degree three and of degree four when divided by a polynomial of degree one and of degree two. 2A(7)(C)
- Determine the sum, difference, product, and quotient of rational expressions with integral exponents of degree one and of degree two. 2A(7)(F)
- Rewrite radical expressions that contain variables to equivalent forms. 2A(7)(G)
- Solve equations involving rational exponents. 2A(7)(H)

