Curriculum Analysis Algebra II

<i>What new content moved into the Algebra I curriculum?</i>	What student expectations in Algebra II may be affected by the change in curriculum?	
	• Determine the effect on the graph of $f(x) = \sqrt{x}$ when $f(x)$ is replaced by $af(x)$, $f(x) + d$, $f(bx)$, and $f(x - c)$ for specific positive and negative values of a , b , c , and d . 2A(4)(C)	
 Determine the effects on the graph of the parent function f(x) = x when f(x) is replaced by af(x), f(x) + d, f(x - c), and f(bx) for specific values of a, b, c, and d. A(3)(E) Determine the effects on the graph of the parent function f(x) = x² when f(x) is replaced by af(x), f(x) + d, f(x - c), and f(bx) for specific values of a, b, c and d. A(7)(C) 	 Determine the effects on the key attributes on the graphs of f(x) = b^x and f(x) = log_b (x), where b is 2, 10, and e when f(x) is replaced by af(x), f(x) + d, and f(x - c) for specific positive and negative real values of a, c, and d. 2A(5)(A) Analyze the effects on the graphs of f(x) = x³ 	
	and $f(x) = {}^{3}\sqrt{x}$ when $f(x)$ is replaced by $af(x)$, $f(bx)$, $f(x - c)$, and $f(x) + d$ for specific positive and negative real values of a , b , c , and d . 2A(6)(A)	
	 Analyze the effect on the graph of f(x) = 1/x when f(x) is replaced by af(x), f(bx), f(x-c), and f(x) + d for specific positive and negative real values of a, b, c, and d. 2A(6)(G) 	
 Using technology, calculate the correlation coefficient between two quantitative variables and interpret this quantity as a measure of the strength of the linear association. A(4)(A) Compare and contrast association and causation in real-world problems. A(4)(B) Using technology, write quadratic functions that provide a reasonable fit to data to estimate solutions and make predictions for real-world problems. A(8)(B) 	 Using technology, formulate quadratic and square root equations given a table of data. 2A(4)(E) Analyze data to select the appropriate model from among linear, quadratic, and exponential models. 2A(8)(A) Using technology, use regression methods to write linear, quadratic, and exponential functions from a given set of data. 2A(8)(B) Predict and make decisions and critical judgments from a given set of data using linear, quadratic, and exponential models. 2A(8)(C) 	
 Using technology, write exponential functions that provide a reasonable fit to data and make predictions for real-world problems. A(9)(E) 		

•	Write equations of quadratic functions given the vertex and another point on the graph, write the equation in vertex form $(f(x) = a(x - h)^2 + k)$, and rewrite the equation from vertex form to standard form $(f(x) = ax^2 + bx + c)$. A(6)(B) Write quadratic functions when given real solutions and graphs of their related equations. A(6)(C) Graph quadratic functions on the coordinate plane and use the graph to identify key attributes, if possible, including <i>x</i> -intercept, <i>y</i> -intercept, zeros, maximum value, minimum value, vertex, and the equation of the axis of symmetry. A(7)(A)	•	Write the quadratic function given three specified points in the plane. 2A(4)(A) Write the equation of a parabola using given attributes, including vertex, focus, directrix, axis of symmetry, and direction of opening. 2A(4)(B) Transform a quadratic function $f(x) = ax^2 + bx + c$ to the form $f(x) = a(x - h)^2 + k$ to identify the different attributes of $f(x)$. 2A(4)(D)
•	Identify terms of arithmetic and geometric sequences when the sequences are given in function form using recursive processes. A(12)(C)	•	Formulate exponential and logarithmic equations that model real-world situations, including exponential relationships written in recursive notation. 2A(5)(B)
•	Write a formula for the n^{th} term of arithmetic and geometric sequences, given the value of several of their terms. A(12)(D)	•	Analyze data to select the appropriate model from among linear, quadratic, and exponential models. 2A(8)(A)
•	Determine the quotient of a polynomial of degree one and polynomial of degree two when divided by a polynomial of degree one and polynomial of degree two when the degree of the divisor does not exceed the degree of the dividend. A(10)(C)	•	Determine the quotient of a polynomial of degree three and of degree four when divided by a polynomial of degree one and of degree two. $2A(7)(C)$ Determine the sum, difference, product, and quotient of rational expressions with integral exponents of degree one and of degree two. 2A(7)(F)
•	Simplify numerical radical expressions involving square roots. A(11)(A) Simplify numeric and algebraic expressions	•	Rewrite radical expressions that contain variables to equivalent forms. 2A(7)(G)
	using the laws of exponents, including integral and rational exponents. A(11)(B)	•	Solve equations involving rational exponents. 2A(7)(H)