Curriculum Analysis
 Geometry

What new content moved into the grade 8 curriculum?	What student expectations in Geometry may be affected by the change in curriculum?
- Generalize that the ratio of corresponding sides of similar shapes are proportional, including a shape and its dilation. 8(3)(A)	- Apply the definition of similarity, in terms of a dilation, to identify similar figures and their proportional sides and the congruent corresponding angles. $G(7)(A)$ - Prove theorems about similar triangles, including the Triangle Proportionality theorem, and apply these theorems to solve problems. G(8)(A)
- Use similar right triangles to develop an understanding of slope, given as the rate comparing the change in y-values to the change in x-values $\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right) \cdot 8(4)(\mathrm{A})$	- Derive and use the distance, slope, and midpoint formulas to verify geometric relationships, including congruence of segments and parallelism, or perpendicularity of pairs of lines. $G(2)(B)$
- Determine the distance between two points on a coordinate plane using the Pythagorean Theorem. 8(7)(D)	- Derive and use the distance, slope, and midpoint formulas to verify geometric relationships. $G(2)(B)$
- Use informal arguments to establish facts about the angle sum of triangles, exterior angles of triangles, angles created when parallel lines are cut by a transversal, and angle-angle criterion for similarity of triangles. 8(8)(D)	- Investigate patterns to make conjectures about geometric relationships, including angles formed by parallel lines cut by a transversal, criteria required for triangle congruence, special segments of triangles, diagonals of quadrilaterals, interior and exterior angles of polygons, and special segments and angles of circles choosing from a variety of tools. $G(5)(A)$ - Verify theorems about angles formed by the intersection of lines and line segments, including vertical angles, and angles formed by parallel lines cut by a transversal, and prove equidistance between the endpoints of a segment and points on its perpendicular bisector and apply these relationships to solve problems. G(6)(A) - Apply the Angle-Angle criterion to verify similar triangles and apply the proportionality of the corresponding sides to solve problems. $G(7)(B)$

- Generalize properties of orientation and congruence of transformations, including rotations. 8(10)(A)
- Differentiate between those transformations that preserve congruence and those that do not, including rotations. 8(10)(B)
- Explain the effect of a transformation of a two-dimensional shape on a coordinate plane using an algebraic representation, including rotations. 8(10)(C)
- Describe and perform transformations of figures in a plane using coordinate notation. G(3)(A)
- Determine the image or pre-image of a figure under a composition of rigid transformations, a composition of non-rigid transformations, and a composition of both, including dilations where the center can be any point in the plane. $G(3)(B)$
- Identify the sequence of transformations that will carry a given pre-image onto an image on and off the coordinate plane. $G(3)(C)$
- Identify and distinguish between reflectional and rotational symmetry in a plane figure. G(3)(D)
- Apply the definition of congruence, in terms of rigid transformations, to identify congruent figures and their corresponding sides and angles. $G(6)(C)$
- Derive and use the distance, slope, and midpoint formulas to verify geometric relationships, including congruence of segments and parallelism or perpendicularity of pairs of lines. $G(2)(B)$
- Determine an equation of a line parallel or perpendicular to a given line that passes through a given point. $G(2)(C)$

