
	12	1	E	the second se		
Name					Data	
ivame:					Date:	

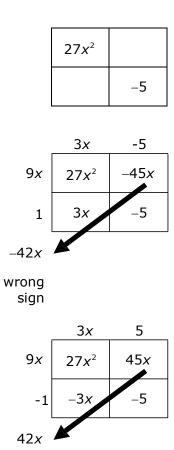
Millie's Multiplication

Millie used the strategy shown to multiply $(3x - 1)(4x^2 - 5x - 3)$.

 $12x^3 - 19x^2 - 4x + 3$

What was her strategy? Complete the four problems below using her strategy.

1	$(5a-1)(-2a^2+4a-3)$	3	(x-8)(7x+4)
2	(3y + 7)(2y + 7)	4	$-3b(b^2 - 4b + 6)$


What patterns did you notice?

High School Fluency Activity – A(10)(B) The student is expected to multiply polynomials of degree one and degree two.

Fred's Factoring

Fred used the strategy shown to factor $27x^2 + 42x - 5$.

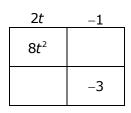
(9x - 1)(3x + 5)

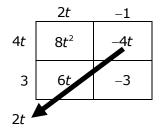
What was his strategy? Complete the four problems below using his strategy.

1	$6x^2 - 19x + 15$	3	$2x^2 - 11x + 5$
2	$3x^2 - 11x - 4$	4	$-10x^{2} + 11x + 6$

What patterns did you notice?

High School Fluency Activity – A(10)(E) The student is expected to factor, if possible, trinomials with real factors in the form $ax^2 + bx + c$, including perfect square trinomials of degree two.


©2015 Texas Education Agency. All Rights Reserved 2015


Introduction to the Revised Mathematics TEKS: Grades 9-12

·	-	 2	3-3	\sim	-		- 192	
Name						Date:		

Darian's Division

Below is Darian's work from his class today for the problem $\frac{8t^2 + 2t - 3}{2t - 1}$.

$$(2t-1)(4t+3)$$

$$\frac{8t^2 + 2t - 3}{2t - 1} = \frac{(2t - 1)(4t + 3)}{2t - 1} = 4t + 3$$

What was his strategy? Complete the four problems below using his strategy.

1	$(3x^2 - 12x - 15) \div (x - 5)$	3	$\frac{6y^2 + 11y - 10}{3y - 2}$
2	$\frac{x^2 - x - 20}{x + 4}$	4	$(2w^2 + 5w - 12) \div (w + 4)$

What patterns did you notice?

High School Fluency Activity – A(10)(C) The student is expected to factor, if possible, trinomials with real factors in the form $ax^2 + bx + c$, including perfect square trinomials of degree two.