

Introduction to the
 Revised Mathematics TEKS

COMPUTATIONAL FLUENCY AND MATHEMATICAL PROFICIENCY JOURNAL GRADES 9-12

The materials are copyrighted (c) and trademarked (tm) as the property of the Texas Education Agency (TEA) and may not be reproduced without the express written permission of TEA, except under the following conditions:

Texas public school districts, charter schools, and Education Service Centers may reproduce and use copies of the Materials and Related Materials for the districts' and schools' educational use without obtaining permission from TEA.

Residents of the state of Texas may reproduce and use copies of the Materials and Related Materials for individual personal use only without obtaining written permission of TEA.

Any portion reproduced must be reproduced in its entirety and remain unedited, unaltered and unchanged in any way.

No monetary charge can be made for the reproduced materials or any document containing them; however, a reasonable charge to cover only the cost of reproduction and distribution may be charged.

Private entities or persons located in Texas that are not Texas public school districts, Texas Education Service Centers, or Texas charter schools or any entity, whether public or private, educational or noneducational, located outside the state of Texas MUST obtain written approval from TEA and will be required to enter into a license agreement that may involve the payment of a licensing fee or a royalty.

For information contact:
Office of Copyrights, Trademarks, License Agreements, and Royalties, Texas Education Agency, 1701 N. Congress Ave., Austin, TX 78701-1494;
phone: 512-463-9041;
email: copyrights@tea.texas.gov.

©2015 Texas Education Agency All Rights Reserved 2015

Your Definitions

Computational Fluency
\square

Mathematical Proficiency
\square

Automaticity
\square

Conceptual Understanding

Vertical Learning Progression Recording Sheet Possible Progression

Grades K - 12

Vertical Learning Progression Recording Sheet Possible Progression

Grades K - 12

	Algebraic Manipulation	Automaticity	Computational Fluency	Mathematical Proficiency

Developing Mathematical Proficiency

Pairing a content standard with a process standard to solve problems allows students to become mathematically proficient with the content for each grade level.

How does pairing a process standard with a content standard allow students to become mathematically proficient?

Why is it important that the student expectations in the mathematical proficiency column be coupled with the process standards?

Name: \qquad Date: \qquad

Francesca's Fractions

Below is Francesca's work from her class today.

$$
\begin{gathered}
\frac{2}{3}+\frac{3}{4} \\
\frac{8}{12}+\frac{9}{12} \\
\left(\frac{8}{12}+\frac{4}{12}\right)+\frac{5}{12} \\
\frac{12}{12}+\frac{5}{12} \\
1 \frac{5}{12}
\end{gathered}
$$

What was her strategy? Complete the four problems below using her strategy.

1	$\frac{2}{3}+\frac{5}{9}$	3
		$\frac{5}{8}+\frac{2}{3}$
2	$\frac{1}{2}+\frac{4}{5}$	4

What patterns did you notice?

Name: \qquad Date: \qquad
Inigo's Integers
Below is Inigo's work from his class today.

$$
\begin{gathered}
-5+8 \\
(-5+5)+3 \\
0+3 \\
3
\end{gathered}
$$

What was his strategy? Complete the four problems below using his strategy.

1	$-6+2$	$-3+15$	
	$7+(-12)$	4	$8+(-5)$
2			

What patterns did you notice?

Name: \qquad Date: \qquad

Ra'Neisha's Rationals

Below is Ra'Neisha's work from her class today.

$$
\begin{gathered}
-1.2+3.4 \\
(-1.2+1.2)+2.2 \\
0+2.2 \\
2.2
\end{gathered}
$$

What was her strategy? Complete the four problems below using her strategy.

What patterns did you notice?
\qquad
\qquad

Millie's Multiplication

Millie used the strategy shown to multiply $(3 x-1)\left(4 x^{2}-5 x-3\right)$.

$4 x^{2}$		$-5 x$	-3
$3 x$	$12 x^{3}$	$-15 x^{2}$	$-9 x$
	$-4 x^{2}$	$5 x$	3

$$
12 x^{3}-19 x^{2}-4 x+3
$$

What was her strategy? Complete the four problems below using her strategy.

$\mathbf{1}$	$(5 a-1)\left(-2 a^{2}+4 a-3\right)$	$\mathbf{3}$	$(x-8)(7 x+4)$
$\mathbf{2}$	$(3 y+7)(2 y+7)$	$\mathbf{4}$	$-3 b\left(b^{2}-4 b+6\right)$

What patterns did you notice?

High School Fluency Activity - $A(10)(B)$ The student is expected to multiply polynomials of degree one and degree two.

Name: \qquad
\qquad

Fred's Factoring

Fred used the strategy shown to factor $27 x^{2}+42 x-5$.

$27 x^{2}$	
	-5

wrong
sign

$$
(9 x-1)(3 x+5)
$$

What was his strategy? Complete the four problems below using his strategy.

$\mathbf{1}$	$6 x^{2}-19 x+15$	$\mathbf{3}$	$2 x^{2}-11 x+5$
$\mathbf{2}$	$3 x^{2}-11 x-4$	$\mathbf{4}$	$-10 x^{2}+11 x+6$

What patterns did you notice?

High School Fluency Activity $-A(10)(E)$ The student is expected to factor, if possible, trinomials with real factors in the form $a x^{2}+b x+c$, including perfect square trinomials of degree two.

Name: \qquad
\qquad

Darian's Division

Below is Darian's work from his class today for the problem $\frac{8 t^{2}+2 t-3}{2 t-1}$.

$2 t$	-1
$8 t^{2}$	
	-3

$(2 t-1)(4 t+3)$

$$
\frac{8 t^{2}+2 t-3}{2 t-1}=\frac{(2 t-1)(4 t+3)}{2 t-1}=4 t+3
$$

What was his strategy? Complete the four problems below using his strategy.

$\mathbf{1}$	$\left(3 x^{2}-12 x-15\right) \div(x-5)$	3	$\frac{6 y^{2}+11 y-10}{3 y-2}$
$\mathbf{2}$	$\frac{x^{2}-x-20}{x+4}$	4	$\left(2 w^{2}+5 w-12\right) \div(w+4)$

What patterns did you notice?

High School Fluency Activity - A(10)(C) The student is expected to factor, if possible, trinomials with real factors in the form $a x^{2}+b x+c$, including perfect square trinomials of degree two.

Drill or Practice?

Drill refers to repetitive, non-problem-based exercises designed to improve skills or procedures already acquired.

Practice refers to different problem-based tasks or experiences, spread over numerous class periods, each addressing the same basic ideas.

Notes:

Case Study Recording Sheet

Examine the case study documents provided for each student. What evidence do you see for each of the categories?

Student A			
Conceptual Understanding	Automaticity	Computational Fluency	Mathematical Proficiency

What additional evidence would you like to gather?

Student B			
Conceptual Understanding	Automaticity	Computational Fluency	Mathematical Proficiency

What additional evidence would you like to gather?

Case Study Student A

Work Sample

James has just purchased a house and wants to lay carpet in the living room, both bedrooms, and his home office. The house has a square dining room and 2 bathrooms that are each $6 \mathrm{~m}^{2}$.

Write an algebraic expression that represents the area that James wants to carpet, then determine the value of x. Justify your response.

$\begin{gathered}\text { Carpeted } \\ \text { Area }\end{gathered}={ }_{\text {living }}+$ bedroom $1+2+$ office

$A=3 x^{3}-6 x^{2} 4+x^{2}-2 \times\left(-x^{2}\right)-x^{3}+\left(1 x^{2}\right)+6 x-12$

$$
A=2 x^{3}-5 x^{2}+4 x-12
$$

Bed Rooms

$$
\begin{aligned}
& A=(x+2)\left(x^{2}-2 x\right) \\
& A=x^{3}-2 x^{2}+2 x^{2}-4 x \\
& A=x^{3}-4 x
\end{aligned}
$$

Case Study Student B

Work Sample

James has just purchased a house and wants to lay carpet in the living room, both bedrooms, and his home office. The house has a square dining room and 2 bathrooms that are each $6 \mathrm{~m}^{2}$.

Write an algebraic expression that represents the area that James wants to carpet, then determine the value of x. Justify your response.

Reflection

Reference Page

Beckmann, S. (2010). Rtl for elementary and middle school mathematics [PowerPoint slides]. Retrieved from http://educationnorthwest.org/webfm_send/710/

National Research Council. (2002). Helping children learn mathematics. Washington, DC: National Academies Press.

National Research Council. (2001). Adding it up: Helping children learn mathematics. Washington, DC: National Academies Press.

Russell, S. J. (2000). Developing computational fluency with whole numbers. Teaching Children Mathematics, 7(3), 154-158. Retrieved from http://libezproxy.tamu.edu:2048/login?url=http://search.proquest.com/docview/21 4137345? accountid=7082

Van De Walle, J. (2004). Elementary and middle school mathematics. Boston, MA: Pearson.

