Intervention for Algebra I

Module 2: Teacher Masters

M
The Meadows Center
$\xlongequal[\text { for preventing educational risk }]{ }$

TEA
TEXAS EDUCATION AGENCY

TE XAS

What Starts Here Changes the World

The Meadows Center

FOR PREVENTING EDUCATIONAL RISK THE UNIVERSITY OF TEXAS AT AUSTIN COLLEGE OF EDUCATION

Mathematics Institute for Learning Disabilities and Difficulties

www.meadowscenter.org

©2012 University of Texas System/Texas Education Agency

These materials are copyrighted © by and are the property of the Texas Education Agency and the University of Texas System and may not be reproduced or distributed without their written permission, except by Texas public school educators under the following conditions:

1. Any portion reproduced or distributed is used exclusively for nonprofit educational purposes in Texas.
2. No monetary charge is made for the reproduced materials, any document containing them, or any activity at which they are distributed; however, a reasonable charge to cover only the cost of reproduction and distribution may be charged.
3. No modifications or changes are made to the materials by anyone without the express written permission of the University of Texas System and the Texas Education Agency.

To obtain a license to reprint large quantities, or to use the materials in a manner not specified above, contact copyrights@tea.state.tx.us

ngage Prior Knowledge Practice

Recall the Order of Operations:

P E
 M/D A/S

E ngage Prior Knowledge Practice Key

Recall the Order of Operations:
\qquad
E
Exponents
M/D Addition / Subtraction (left to right)

Expressions

Definition: An expression is
\qquad
\qquad
\qquad
\qquad

Circle the terms in the following expression:

$$
4 x-5+3 x+3
$$

Expressions can be either numerical or algebraic.

Numerical Expressions	Algebraic Expressions

Evaluating Numerical Expressions

To evaluate an expression means to find the number that the expression is equal to.

Evaluate the following expressions.
$13-2(5)$
$3(2)+5(11)$
$\frac{15}{3}$
$(5)(5)(2)-1$

Expressions

Definition: An expression is
a mathematical phrase that combines numbers and/or variables
using the operations of addition, subtraction, multiplication, or
division. An expression does not contain an equal sign and it
represents one single quantity.

Circle the terms in the following expression:

Expressions can be either numerical or algebraic.

Numerical Expressions	Algebraic Expressions
$7(15)-5$	$7 x-5$

Evaluating Numerical Expressions

To evaluate an expression means to find the number that the expression is equal to.

Evaluate the following expressions.
$13-2(5)$
$3(2)+5(11)$
$\frac{15}{3}$
$(5)(5)(2)-1$
$13-10$
$6+55$
5
25(2) - 1
50-1

Guided Practice

Circle the terms in each expression and tell whether the expression is a numerical expression or algebraic expression.

1. $3+4-5(2)$
2. $2 y+3-4 y$
3. $9-\frac{40}{8}+1$
4. $3 a$

Evaluate the following expressions.
5. $16 \div(6-2)+3$
6. $2(7)-13+\frac{6}{2}$

Practice (cont.)
 Pair Practice

Create a numerical expression. Trade with your partner and have him/her evaluate the expressions.

Numerical Expressions	Evaluate Expressions
Example:	
1. $3(10)+3(3)$	$3(10)+3(3)$ $30+9$ 39
2. -	

Guided Practice

Circle the terms in each expression and tell whether the expression is a numerical expression or algebraic expression.

1. $3+4$ - $5(2)$
numerical expression
2. $2 y+(3)-4 y$
algebraic expression
3. $9-\frac{40}{8}+1$
4. (3a)
numerical expression
algebraic expression

Evaluate the following expressions.
5. $16 \div(6-2)+3$

$$
16 \div(4)+3
$$

$$
4+3
$$

7
6. $2(7)-13+\frac{6}{2}$
$14-13+3$
$1+3$
4

P ractice Key (cont.)
 Pair Practice

Create a numerical expression. Trade with your partner and have him/her evaluate the expressions.

Numerical Expressions	Evaluate Expressions
Example:	
1. $\frac{3(10)+3(3)}{}$	$3(10)+3(3)$ $30+9$ 39
2.answers may vary	
3. answers may vary	

rror Correction Practice

3 different students evaluated the following problem. Each student got a different answer.

With a partner, determine why the students got different answers.
Write your reasoning in the space provided below each student work.

Student 1	Student 2	Student 3
$24 \div(6-2)+5(2)$ $4-2+5(2)$ $2+5(2)$ $7(2)$ 14	$24 \div(6-2)+5(2)$ $24 \div 4+5(2)$ $6+10$ 16	$24 \div(6-2)+5(2)$
		$24+5(2)$ $11(2)$ 22

rror Correction Practice Key

3 different students evaluated the following problem. Each student got a different answer.

With a partner, determine why the students got different answers. Write your reasoning in the space provided below each student work.

Student 1	Student 2	Student 3
$\begin{gathered} 24 \div(6-2)+5(2) \\ 4-2+5(2) \\ 2+5(2) \\ 7(2) \end{gathered}$ 14	$\begin{gathered} 24 \div(6-2)+5(2) \\ 24 \div 4+5(2) \\ 6+10 \\ 16 \end{gathered}$	$\begin{gathered} 24 \div(6-2)+5(2) \\ 24 \div 4+5(2) \\ 6+5(2) \\ 11(2) \\ 22 \end{gathered}$
Student 1 divided	Student 2 performed	Student 3 added 6
24 by 6 first, rather	the operations	and 5 rather than
than subtract	correctly.	multiply 5 and 2.
2 from 6.		

Name:

\qquad
(I) independent Practice score:__ / 5 correct

Matching: Evaluate the expressions in Column 1 and draw a line to matching equivalent expression in the second Column. Each matching is worth 1 point.

Column 1	Column 2
$16(2)-10$	24
$(56 \div 7)+10$	7
$\frac{15}{3}+2(6)$	18
$(2)(3)(4)$	22
$(3)(3)-2$	17

I ndependent Practice Key sooe

 / 5 correctMatching: Evaluate the expressions in column 1 and draw a line to matching equivalent expression in the second column. Each matching is worth 1 point.

Circle the terms in the expression and tell whether the expression is a numerical expression or algebraic expression (2 pts).

1. $\frac{27}{9}+4 y-16$

Evaluate the expression (2 pts).
2. $14(2)-\frac{30}{3}$

Circle the terms in the expression and tell whether the expression is a numerical expression or algebraic expression (2 pts).

Scoring Key:
1 point for correctly circling terms
1 point for algebraic expression

Evaluate the expression (2 pts).
2. $14(2)-\frac{30}{3}$
$28-10$
18

Evaluating Expressions

Evaluate the following expressions.
9(2)
$\frac{36}{2}$
$\frac{[5(7)+1]}{2}$

Definition: Equivalent expressions are

Definition: An Equation is
\qquad
\qquad
\qquad

If two expressions are equivalent, we can write them as an equation.

If two expressions are not equivalent, they do not form an equation and we say that they are not equal.

$$
\begin{aligned}
& 11(2)+4(2) \square 2(15) \\
& 11(2)+4(2) \square 4(20-10)
\end{aligned}
$$

Demonstration Practice (cont.)

Are They Equivalent?

Fill in each box below with $\mathrm{a}=$ or \neq to show whether the expressions are equivalent.

1. $16-2(5) \square 36 \div 6-1$
2. $0-2(5)(1) \square 14-24$
3. $17-7+3 \square \frac{12}{2}+5$
4. $2(8)+2(4) \square 2(8+3)$

Creating Equivalent Expressions

1. Create 4 different expressions that represent the quantity 30 .
2. Create 4 different expressions that represent the quantity 17 .

Demonstration Practice Key

Evaluating Expressions

Evaluate the following expressions.
20-2
18 9(2)
18
$\frac{36}{2}$ $\frac{[5(7)+1]}{2}$
18
36/2
18

Definition: Equivalent expressions are

two expressions whose values are equal for ALL replacements of the variable or variables.

Definition: An Equation is

a math sentence stating that 2 expressions are equivalent.
expression = expression

If two expressions are equivalent, we can write them as an equation.

If two expressions are not equivalent, they do not form an equation and we say that they are not equal.

$$
11(2)+4(2) \boxminus 2(15)
$$

$$
11(2)+4(2) \nexists 4(20-10)
$$

Demonstration Practice Key (cont.)

Are They Equivalent?

Fill in each box below with $\mathrm{a}=$ or \neq to show whether the expressions are equivalent.

1. $16-2(5)$
\# $36 \div 6-1$
16-10
6
6-1
5
2. $0-2(5)(1) \boxminus 14-24$
$0-10$ (1)
0-10
$-10 \quad-10$
3. $17-7+3 \neq \frac{12}{2}+5$
$10+3 \quad 6+5$
1311
4. $2(8)+2(4) \neq 2(8+3)$
$16+8$
24
2(11)
22

Creating Equivalent Expressions

1. Create 4 different expressions that represent the quantity 30 .
answers may vary
\qquad
\qquad
\qquad
\qquad
2. Create 4 different expressions that represent the quantity 17. answers may vary
\qquad
\qquad

Pair Practice

Create any 2 expressions. Make sure there is at least 1 set of expressions that are equivalent and 1 set that are not equivalent. Trade with your partner to determine whether the expressions that your partner created are equivalent.

Rewrite the expressions with $\mathrm{a}=$ or \neq to show whether the expressions are equivalent.

Create 2 Expressions	Partner Check: Are They Equivalent?
Example: 1. \qquad $5(10)+5(20)$ and \qquad $25(50)$	Not equivalent $\begin{gathered} 5(10)+5(20) \neq 25(50) \\ 50+100 \quad 500 \\ 150 \end{gathered}$
2. __ and	
3.	
4. __ and	

Create any 2 expressions. Make sure there is at least 1 set of expressions that are equivalent and 1 set that are not equivalent. Trade with your partner to determine whether the expressions that your partner created are equivalent.

Rewrite the expressions with $\mathrm{a}=$ or \neq to show whether the expressions are equivalent.

Create 2 Expressions			Partner Check: Are They Equivalent?
	$(10)+5(20)$	25(50)	Not equivalent $\begin{array}{cc} 5(10)+5(20) \neq 25(50) \\ 50+100 \quad 500 \\ 150 & \end{array}$
	answers may vary	answers may vary	
	answers may vary	answers may vary	
	answers may vary	answers may vary	

Name:

\qquad
(Independent Practice score: / 5 correct

Matching: Determine which of the expressions are equivalent. Draw a line to match each expression in the first column to the equivalent expression in the second column. Each matching is worth 1 point.

Column 1	Column 2
$5+22$	$3(10+3)$
$72 \div 9$	$72-4(4)$
$3(10)+3(3)$	$(3)(3)(3)$
$(16+2)(13+3)$	$9-(40-39)$
$8(9)-16$	$18(16)$

Matching: Determine which of the expressions are equivalent. Draw a line to match each expression in the first column to the equivalent expression in the second column. Each matching is worth 1 point.

\qquad
Evaluate the following numeric expression (2 pts).

1. $\frac{12}{2}+4(4)$

Determine which expressions are equivalent. Fill in the letter of the equivalent expression. Each problem is worth 1 point.

$$
\text { 2. } 5(4)-5(3-1)
$$

A $2(3+5)$
3. $\frac{2+7}{3}$

B $4-(-2)(3)$

C $2+(19-18)$
\qquad / 4 correct

Evaluate the following numeric expression (2 pts).

1. $\frac{12}{2}+4(4)$

$$
\begin{gathered}
6+16 \\
22
\end{gathered}
$$

Scoring Key:
1 point for dividing and multiplying correctly first
1 point for adding correctly

Determine which expressions are equivalent. Fill in the letter of the equivalent expression. Each problem is worth 1 point.
2. $5(4)-5(3-1)$
B
A $2(3+5)$
3. $\frac{2+7}{3}$

C
C $2+(19-18)$

Evaluate each expression for the given value of the variable.

1. Evaluate $3 x+2$ when $x=5$.

2. What is the value of $\boldsymbol{x}-\mathbf{3}+\mathbf{4 x}$, when $x=2$?
3. Evaluate $-\boldsymbol{x}+\mathbf{6}$ for the following values of x.

\boldsymbol{x}	Process	$\boldsymbol{- x}+\mathbf{6}$
-2		
0		
2		
4		

4. Evaluate $\mathbf{7 + x} \mathbf{- 2 + 3 x}$ for the following values of x.

\boldsymbol{x}	Process	$\mathbf{7 + x} \mathbf{- 2 + 3 x}$
-1		
0		
1		
2		

Evaluate each expression for the given value of the variable.

1. Evaluate $3 x+2$ when $x=5$.

2. What is the value of $\boldsymbol{x}-\mathbf{3}+\mathbf{4 x}$, when $x=2$?

$$
\begin{gathered}
(2)-3+4(2) \\
2-3+8 \\
-1+8 \\
7
\end{gathered}
$$

3. Evaluate $-\boldsymbol{x}+\mathbf{6}$ for the following values of x.

\boldsymbol{x}	Process	$\boldsymbol{- x}+\mathbf{6}$
-2	$-1(-2)+6$	8
0	$-1(0)+6$	6
2	$-1(2)+6$	4
4	$-1(4)+6$	2

4. Evaluate $\mathbf{7 + x} \mathbf{- 2 + 3 x}$ for the following values of x.

\boldsymbol{x}	Process	$\mathbf{7 + \boldsymbol { x } - \mathbf { 2 } + \mathbf { 3 x }}$
-1	$7+(-1)-2+3(-1)$ $7-1-2-3$	1
0	$7+(0)-2+3(0)$ $7-2$	5
1	$7+(1)-2+3(1)$ $8-2+3$	9
2	$7+(2)-2+3(2)$ $7+2-2+6$	13

Evaluate the expression for each x value and match to the correct value. Some of the Matching Values are not used. You must show the substitution of the value into the expression to evaluate.

EXPRESSION: $-5 x+3+2 x-7$

1. When $x=-2$, the value of the expression is \qquad .
2. When $x=4$, the value of the expression is \qquad .

C 5
3. When $x=-1$, the value of the expression is \qquad .

D -13

E -18
4. When $x=3$, the value of the expression is \qquad .

F -16
5. When $x=-3$, the value of the expression is \qquad .

G 2

Evaluate the expression for each x value and match to the correct value. Some of the Matching Values are not used. You must show the substitution of the value into the expression to evaluate.

EXPRESSION: $-5 x+3+2 x-7$

1. When $x=-2$, the value of the expression is \qquad G .

$$
\begin{gathered}
-5(-2)+3+2(-2)-7 \\
10+3-4-7 \\
13-4-7 \\
9-7 \\
2
\end{gathered}
$$

Matching Values:
$-17+8-7$
3. When $x=-1$, the value of the expression is \qquad B .

D -13

$$
\begin{gathered}
-5(-1)+3+2(-1)-7 \\
5+3-2-7 \\
8-2-7 \\
6-7 \\
-1
\end{gathered}
$$

4. When $x=3$, the value of the expression is \qquad .

$$
-5(3)+3+2(3)-7
$$

$$
-15+3+6-7
$$

$$
-12+6-7
$$

$$
-6-7
$$

5. When $x=-3$, the value of the expression is \mathbf{C}. G 2

$$
\begin{gathered}
-5(-3)+3+2(-3)-7 \\
15+3-6-7 \\
18-6-7 \\
12-7 \\
5
\end{gathered}
$$

Name:

ndependent Practice
Evaluate the expression for each x value and match to the correct value. Some of the Matching Values are not used. Write all steps to evaluate the expression for the given x value. Each problem is worth 2 points.

EXPRESSION: 4x-5-6x+1
Matching Values:

1. When $x=-3$, the value of the expression is \qquad .

A -10

B -8
2. When $x=-1$, the value of the expression is \qquad .

C - 7
3. When $x=0$, the value of the expression is \qquad .

D -4

E - 2
4. When $x=2$, the value of the expression is \qquad .
5. When $x=-2$, the value of the expression is \qquad .

G 2

Evaluate the expression for each x value and match to the correct value. Some of the Matching Values are not used. Write all steps to evaluate the expression for the given x value. Each problem is worth 2 points.

EXPRESSION: 4x-5-6x+1
Matching Values:

1. When $x=-3$, the value of the expression is \qquad G .

$$
\begin{gathered}
4(-3)-5-6(-3)+1 \\
-12-5+18+1 \\
-17+18+1 \\
1+1 \\
2
\end{gathered}
$$

2. When $x=-1$, the value of the expression is \qquad E .

$$
\begin{gathered}
4(-1)-5-6(-1)+1 \\
-4-5+6+1 \\
-9+6+1 \\
-3+1 \\
-2
\end{gathered}
$$

3. When $x=0$, the value of the expression is \mathbf{D}.

D -4 $4(0)-5-6(0)+1$
$0-5-0+1$ $-5+1$
4. When $x=2$, the value of the expression is \qquad .

$$
4(2)-5-6(2)+1
$$

$$
8-5-12+1
$$

$$
3-12+1
$$

$$
-9+1
$$

5. When $x=-2$, the value of the expression is \qquad F .

G 2

$$
\begin{gathered}
4(-2)-5-6(-2)+1 \\
-8-5+12+1
\end{gathered}
$$

$$
-13+12+1 \quad \text { Scoring Key: }
$$

$$
-1+1 \quad 1 \text { point for correct substitution and }
$$

$$
0 \quad 1 \text { point for correct evaluation. }
$$

Circle the equivalent numeric expression (1 pt).

1. $6(7)+\frac{22}{11}$

A 2(23-2)
B $4(3+8)$
C $13+2$

Evaluate the algebraic expression for the following x value (2 pts).
2. $6 x-7+9-3 x+1$

When $x=-2$, the value of the expression is \qquad .

Circle the equivalent numeric expression (1 pt).

1. $6(7)+\frac{22}{11}$

A 2(23-2)
B $4(3+8)$
C $13+2$

Evaluate the algebraic expression for the following x value (2 pts).
2. $6 x-7+9-3 x+1$

When $x=-2$, the value of the expression is \qquad -3 .

$$
\begin{gathered}
6(-2)-7+9-3(-2)+1 \\
-12-7+9+6+1 \\
-19+9+6+1 \\
-10+6+1 \\
-4+1 \\
-3
\end{gathered}
$$

Scoring Key:
1 point for correct substitution
1 point for correct solution

Draw a pictorial representation of each algebraic expression using algebra tiles to determine if they are equivalent.

Algebraically: \qquad
2.

Algebraically: \qquad
3.

Algebraically: \qquad
\qquad
4. $m+m+m+m+m+m \quad 6 m$

Algebraically: \qquad

D emonstration Practice Key

Draw a pictorial representation of each algebraic expression using algebra tiles to determine if they are equivalent.

Algebraically: $\quad 3 x+2 \quad x+1+x+1+x$
2.

Algebraically: $\quad x+2+x+1+1$

$2 x+3$
3.

Algebraically: $\underline{h+3+h+2+h+1}$

$2 h+4$

Demonstration Practice Key (cont.)

4.

$m+m+m+m+m+m$
$6 m$

Algebraically: $\underline{m+m+m+m+m+m}$ $=$ $6 m$

ractice

For each algebraic expression, sketch the pictorial representation and then write an equivalent algebraic expression.

1. $b+b+2+3+b+b$

Sketch Algebraic Expression:
\square

Equivalent Algebraic Expression:
2. $1+b+b+1$

Sketch Algebraic Expression:
\square

Equivalent Algebraic Expression:
3. $4 b+7$

Sketch Algebraic Expression:

\square
Equivalent Algebraic Expression:
4. $3 b+3$

Sketch Algebraic Expression:

\square
Equivalent Algebraic Expression:

ractice Key

For each algebraic expression, sketch the pictorial representation and then write an equivalent algebraic expression.

1. $b+b+2+3+b+b$

Sketch Algebraic Expression:

Equivalent Algebraic Expression:

$$
4 b+5
$$

2. $1+b+b+1$

Sketch Algebraic Expression:

Equivalent Algebraic Expression:

$$
2 b+2
$$

3. $4 b+7$

Sketch Algebraic Expression:

Equivalent Algebraic Expression:

$$
b+b+3+b+3+1+b
$$

4. $3 b+3$

Sketch Algebraic Expression:

Equivalent Algebraic Expression:

$$
b+b+1+b+2
$$

Name:

(I) ndependent Practice score: / 12 correct

For each algebraic expression, sketch the pictorial representation and then match to an equivalent algebraic expression. Each problem is worth 3 points.

1. $j+j+1+j+1$

Sketch Algebraic Expression:

Equivalent Algebraic Expression:

A $3 j+z$
2. $j+j+2+j+j$

Sketch Algebraic Expression:

\square
\qquad B $j+2+2+j$
3. $2 j+4$

Sketch Algebraic Expression:

\qquad C $1+j+j+2+j+1$
4. $3 j+4$

Sketch Algebraic Expression:

D $4 j+2$

For each algebraic expression, sketch the pictorial representation and then match to an equivalent algebraic expression. Each problem is worth 3 points.

1. $j+j+1+j+1$

Sketch Algebraic Expression:

Equivalent Algebraic Expression:

A $3 j+z$
2. $j+j+2+j+j$

Sketch Algebraic Expression:
3. $2 j+4$

Sketch Algebraic Expression:

B
C $1+j+j+2+j+1$
4. $3 j+4$

Sketch Algebraic Expression:

\qquad
Evaluate the following expression for the given value of x.
EXPRESSION: $2 x+7-5 x-3$

1. When $x=-2$, the value of the expression is \qquad . (2 pts)

Draw the given algebraic expression and circle the equivalent algebraic expression. (1 pt)
2. $y+1+y+2+y+3+y$

A $4 y+6$
B $4 y+5$
C $2 y+5$
D $y+6$

Evaluate the following expression for the given value of x.
EXPRESSION: $2 x+7-5 x-3$

1. When $x=-2$, the value of the expression is 10 . (2 pts)

$$
\begin{gathered}
2(-2)+7-5(-2)-3 \\
-4+7+10-3 \\
3+10-3 \\
13-3 \\
10
\end{gathered}
$$

Scoring Key:
1 pt for correct substitution
1 pt correct value
Draw the given algebraic expression and circle the equivalent algebraic expression. (1 pt)
2. $y+1+y+2+y+3+y$

(A) $4 y+6$

B $4 y+5$
C $2 y+5$
D $y+6$

Simplifying Algebraic Expressions

To simplify any expression you...
1.
2. \qquad

What makes terms like or unlike...

$$
a+3-5+2 a-4 a
$$

Algebra Tiles:

Collected Algebra Tiles:

How do we combine like terms...

$$
\text { Rewrite: } \quad a+3-5+2 a-4 a
$$

Simplified form: \qquad

Simplify: \qquad

1. $7 y+2-y+1$
2. $x+4-9 x-3$

Demonstration Practice (cont.)

What if there is a multiplier...

$$
4+2(b-1)
$$

Algebra Tiles:

Collected Algebra Tiles:

$$
4+2(b-1)
$$

This means $4+2(b-1)$ is equivalent to \qquad .

1. $3(x-2)+4(2 x+1)$
\qquad
This means $3(x-2)+4(2 x+1)$ is equivalent to \qquad
2. $5(3+h)-7+2(h-4)$

This means $5(3+h)-7+2(h-4)$ is equivalent to \qquad

Guiding Questions to Simplify Algebraic Expressions:

1. \qquad
2. \qquad
3.
4. \qquad

D emonstration Practice Key

Simplifying Algebraic Expressions

To simplify any expression you...
1.

Distribute

2.

Collect then combine like terms

What makes terms like or unlike...

$$
a+3-5+2 a-4 a
$$

How do we combine like terms...
Rewrite:

$$
\begin{aligned}
& a+3-5+2 a-4 a \\
& a+2 a-4 a+3-5
\end{aligned}
$$

Simplified form: $-a-2$

Simplify: \qquad perform all indicated operations to find an equivalent algebraic expression.

1. $7 y+2-y+1$
$7 y-y+2+1$
2. $x+4-9 x-3$
$x-9 x+4-3$
$6 y+3$
$-8 x+1$

Demonstration Practice Key (cont.)

What if there is a multiplier...

$$
4+2(b-1)
$$

Algebra Tiles:

Collected Algebra Tiles:

$$
\begin{gathered}
4+2(b-1) \\
4+2 b-24+2 b-2 \\
2 b+4-2 \text { or } 4-2+2 b \\
2 b+2 \text { or } 2+2 b
\end{gathered}
$$

This means $4+2(b-1)$ is equivalent to \qquad $2 b+2$.

1. $3(x-2)+4(2 x+1)$
$3 x-6+8 x+4$
$3 x+8 x-6+4$
$11 x-2$
This means $3(x-2)+4(2 x+1)$ is equivalent to \qquad
2. $5(3+h)-7+2(h-4)$
$15+5 h-7+2 h-8$
$5 h+2 h+15-7-8$
7h
This means $5(3+h)-7+2(h-4)$ is equivalent to 7 h

Guiding Questions to Simplify Algebraic Expressions:

1. Is there a value that needs to be distributed?
2. What are the like terms?
3. How do I collect like terms?
4. What operation do I perform to combine like terms?

Pair Practice

Create an algebraic expression that will need to be simplified. Trade with your partner and have him/her simplify the expressions. At least one expression must use distribution to simplify.

Created Algebraic Expressions	Partner Work: Simplified Expression
Example:	$-3 k+5+7(k-1)$ $-3 k+5+7(k-1)$ $-3 k+5+7 k-7$ $-3 k+7 k+5-7$ $4 k-2$
1.	
2.	
3.	

Pair Practice

Create an algebraic expression that will need to be simplified. Trade with your partner and have him/her simplify the expressions. At least one expression must use distribution to simplify.

Created Algebraic Expressions	Partner Work: Simplified Expression
Example: $-3 k+5+7(k-1)$	$\begin{aligned} & -3 k+5+7(k-1) \\ & -3 k+5+7 k-7 \\ & -3 k+7 k+5-7 \\ & 4 k-2 \end{aligned}$
1. answers will vary	
2. answers will vary	
3. answers will vary	
4. answers will vary	

E rror Correction Practice

The given situations are work completed by three different students. Determine which student is correct and explain the errors of the other students.

Simplify the following algebraic expressions.

$$
4(m+2)-3(2 m+1)
$$

Student 1:

$4(m+2)-3(2 m+1)$
$4 m+2-6 m+1$
$4 m-6 m+2+1$
$-2 m+3$

Student 2:

$4(m+2)-3(2 m+1)$
$4 m+8-6 m-3$
$4 m-6 m+8-3$
$-2 m+5$

Student 3:

$$
4(m+2)-3(2 m+1)
$$

$$
4 m+8-6 m+3
$$

$$
4 m-6 m+8+3
$$

$$
-2 m+11
$$

E rror Correction Practice Key

The given situations are work completed by three different students. Determine which student is correct and explain the errors of the other students.

Simplify the following algebraic expressions.

$$
4(m+2)-3(2 m+1)
$$

Student 1:
$4(m+2)-3(2 m+1)$
$4 m+2-6 m+1$
$4 m-6 m+2+1$
$-2 m+3$

Student 2:

$$
\begin{aligned}
& 4(m+2)-3(2 m+1) \\
& 4 m+8-6 m-3 \\
& 4 m-6 m+8-3 \\
& -2 m+5
\end{aligned}
$$

Student 3:

$$
\begin{aligned}
& 4(m+2)-3(2 m+1) \\
& 4 m+8-6 m+3 \\
& 4 m-6 m+8+3 \\
& -2 m+11
\end{aligned}
$$

Student 2 is correct. Student 1 did not distribute the 4 to the second term 2 and the -3 to the second term 1. Student 3 did not distribute the negative

with the 3 .

Name:

\qquad

Matching: Simplify the expressions in Column 1 and draw a line to the matching equivalent expression in the second Column. Each simplified expression with work shown is worth 1 or 2 points.

I ndependent Practice Key

Score: / 7 correct

Matching: Simplify the expressions in column 1 and draw a line to the matching equivalent expression in the second column. Each simplified expression with work shown is worth 1 or 2 points.
Column 1
$3(b-3)-5 b+2$
$36-9-5 b+2(1 \mathrm{pt})$
$3 b-5 b-9+22$
$-2 b-7(1 \mathrm{pt})$
$-b+2(b+5)-8+3 b$
$-b+2 b+10-8+3 b(1 \mathrm{pt})$
$-b+2 b+3 b+10-8$
$4 b+2(1 \mathrm{pt})$
$5+6 b-7 b+3$
$-b+8(1 \mathrm{pt})$
$-2 b+3+b+4(1-b)$
$-2 b+5+b+4-4 b(1 \mathrm{pt}$
$-2 b+b-4 b+3+4$
$-5 b+7(1 \mathrm{pt})$
$6(2 b+1)-8(3+b)$
$12 b+6-24-8 b(1 \mathrm{pt})$
$12 b-8 b+6-24$
$4 b-18(1 \mathrm{pt})$
\qquad

Draw the following algebraic expression and circle the letter of the equivalent expression. (1 pt)

1. $3 h+4$

A $h+1+h+1+1+h$
B $1+h+1+h+h+2+h$
C $h+2+h+1+1$
D $1+h+2+h+h+1$
2. Simplify the following algebraic expression (6 pts):

$$
-3 a-6+2(a-1)
$$

This means that $-3 a-6+2(a-1)$ is equivalent to \qquad and I can write the equation:
\qquad

Draw the following algebraic expression and circle the letter of the equivalent expression. (1 pt)

1. $3 h+4$

A $h+1+h+1+1+h$
B $1+h+1+h+h+2+h$
C $h+2+h+1+1$
(D) $1+h+2+h+h+1$
2. Simplify the following algebraic expression (6 pts):

$$
\begin{aligned}
& -3 a-6+2(a-1) \\
& -3 a-6+2(a-1) \\
& -3 a-6+2 a-2 \\
& -3 a+2 a-6-2
\end{aligned}
$$

$$
-a-8 \quad \text { (3 pts) }
$$

This means that $-3 a-6+2(a-1)$ is equivalent to \qquad (1 pt) and I can write the equation:

$$
-3 a-6+2(a-1)(1 \mathrm{pt})=\quad=\quad-a-8 \quad(1 \mathrm{pt})
$$

D emonstration Practice

Testing for Equivalent Algebraic Expressions
Using a Calculator to Create a Graph
We can use a calculator to create a graph to determine if 2 expressions are equivalent.

- Using your graphing calculator, press $Y=$
- Type the first expression into Y_{1} and the second expression into Y_{2}.
- Move your cursor to the front of the second expression to highlight the backslash. Press ENTER once to change the type of line the second expression will graph.
- Press Z00M, 6 to graph the standard 10 by 10 window.

Using a graphing calculator, check to see if each expression is equivalent.

1. $x-3-3 x+5 x+1 \square 3 x-2$

Sketch the image of the graphs:

Plotl	Plot2 Plotl
$\backslash Y_{1}=$	$x-3-3 x+5 x+1$
$\backslash Y_{2}=$	$3 x-2$
$\backslash Y_{3}=$	
$\backslash Y_{4}=$	
$\backslash Y_{5}=$	
$\backslash Y_{5}=$	
$\backslash Y_{7}=$	

5 table values to support your evaluation:

\mathbf{X}	$\mathbf{Y}_{\mathbf{1}}$	$\mathbf{Y}_{\mathbf{2}}$

Look at the table of values by pressing LND , GRAPH.
Do the tables of value match for ALL values of x that you see?

Demonstration Practice (cont.)

2. $-(4 x+2)+2 x-8$ \square
Sketch the image of the graphs:

Plotl	Plot己 Plotl
$\backslash Y_{1}=$	$-(4 x+2)+2 x-8$
$\backslash Y_{2}=$	$3 x+5$
$\backslash Y_{3}=$	
$\backslash Y_{4}=$	
$\backslash Y_{5}=$	
$\backslash Y_{5}=$	
$\backslash Y_{7}=$	

5 table values to support your evaluation:

\mathbf{X}	\mathbf{Y}_{1}	$\mathbf{Y}_{\mathbf{2}}$

Do the tables of value match for ALL values of x that you see? \qquad
3. $2(x-3)-3 x+5$ \square $-x-1$

Sketch the image of the graphs:

Plotl	Plot2	Plotl
$\backslash Y_{1}=$	2(x-3)	$-3 x+5$
$\backslash Y_{2}=$	$-x-1$	
$\backslash Y_{3}=$		
$\backslash Y_{4}=$		
$\backslash Y_{5}=$		
$\backslash Y_{5}=$		
$\backslash Y_{7}=$		

5 table values to support your evaluation:

\mathbf{X}	\mathbf{Y}_{1}	$\mathbf{Y}_{\mathbf{2}}$

Do the tables of value match for ALL values of x that you see? \qquad

Demonstration Practice (cont.)

4. Henry and his business partner Enrique own a t-shirt print shop. The sale price for a printed t-shirt is represented by the expression $10 x+3$, where x represents the number of t-shirts in an order. The cost of printing t-shirts is represented by the expression $4 x+5$, where x represents the number of t -shirts in an order.

Sale price: $10 x+3 \quad$ Cost: $4 x+5$
The profit they make is represented by the expression $10 x+3-(4 x+5)$. Enrique believes that the expression $6 x-2$ is an equivalent way to express the profit. Is Enrique correct? Use your graphing calculator to test Enrique's hypothesis. Does Enrique's hypothesis appear to be true or false?

$$
10 x+3-(4 x+5) \square 6 x-2
$$

Sketch the image of the graphs:

List $5 x$-values (t-shirt quantities) and their corresponding y-values (profit amounts) to support your determination.

\mathbf{X} (Number of T-Shirts)	$\mathbf{Y}_{\mathbf{1}}$ (Profit 1)	$\mathbf{Y}_{\mathbf{2}}$ (Profit 2)

Demonstration Practice Key

Testing for Equivalent Algebraic Expressions

Using a Calculator to Create a Graph

We can use a calculator to create a graph to determine if 2 expressions are equivalent.

- Using your graphing calculator, press $Y=$
- Type the first expression into Y_{1} and the second expression into Y_{2}.
- Move your cursor to the front of the second expression to highlight the backslash. Press ENTER once to change the type of line the second expression will graph.
- Press ZOOM, 6 to graph the standard 10 by 10 window.

Using a graphing calculator, check to see if each expression is equivalent.

$$
\text { 1. } x-3-3 x+5 x+1 \begin{gathered}
Y 1 \\
=\begin{array}{c}
Y 2 \\
3 x-2
\end{array} ~
\end{gathered}
$$

Sketch the image of the graphs:

Plotl	Plot2 Plotl
$\backslash Y_{1}=$	$x-3-3 x+5 x+1$
$\backslash Y_{2}=$	$3 x-2$
$\backslash Y_{3}=$	
$\backslash Y_{4}=$	
$\backslash Y_{5}=$	
$\backslash Y_{6}=$	
$\backslash Y_{7}=$	

5 table values to support your evaluation:

\mathbf{X}	$\mathbf{Y}_{\mathbf{1}}$	$\mathbf{Y}_{\mathbf{2}}$
-2	-8	-8
-1	-5	-5
0	-2	-2
1	1	1
2	4	4

Look at the table of values by pressing LND 7 GRAPH.
Do the tables of value match for ALL values of x that you see? \qquad

Demonstration Practice Key (cont.)

2. $-(4 x+2)+2 x-8 \square \begin{gathered}Y_{2} \\ \neq \square\end{gathered}$

Sketch the image of the graphs:

Plotl	Plot2 Plotl
$\backslash Y_{1}=$	$-(4 x+2)+2 x-8$
$\backslash Y_{2}=$	$3 x+5$
$\backslash Y_{3}=$	
$\backslash Y_{4}=$	
$\backslash Y_{5}=$	
$\backslash Y_{6}=$	
$\backslash Y_{7}=$	

5 table values to support your evaluation:

\mathbf{X}	$\mathbf{Y}_{\mathbf{1}}$	$\mathbf{Y}_{\mathbf{2}}$
-4	-2	-7
-3	-4	-4
-2	-6	-1
-1	-8	2
0	-10	5

Do the tables of value match for ALL values of x that you see? \qquad No
3. $2(x-3)-3 x+5 \square=\begin{gathered}Y_{2} \\ -x-1\end{gathered}$

Sketch the image of the graphs:

Plotl	Plot2	Plotl
$\backslash Y_{1}=$	$2(x-3)-3 x+5$	
$\backslash Y_{2}=$	$-x-1$	
$\backslash Y_{3}=$		
$\backslash Y_{4}=$		
$\backslash Y_{5}=$		
$\backslash Y_{6}=$		
$\backslash Y_{7}=$		

5 table values to support your evaluation:

\mathbf{X}	$\mathbf{Y}_{\mathbf{1}}$	$\mathbf{Y}_{\mathbf{2}}$
-3	2	2
-2	1	1
-1	0	0
0	-1	-1
1	-2	-2

Do the tables of value match for ALL values of x that you see? \qquad Yes

Demonstration Practice Key (cont.)

4. Henry and his business partner Enrique own a t-shirt print shop. The sale price for a printed t-shirt is represented by the expression $10 x+3$, where x represents the number of t-shirts in an order. The cost of printing t-shirts is represented by the expression $4 x+5$, where x represents the number of t -shirts in an order.

Sale price: $10 x+3 \quad$ Cost: $4 x+5$
The profit they make is represented by the expression $10 x+3-(4 x+5)$. Enrique believes that the expression $6 x-2$ is an equivalent way to express the profit. Is Enrique correct? Use your graphing calculator to test Enrique's hypothesis. Does Enrique's hypothesis appear to be true or false?

$$
\begin{gathered}
\mathrm{Y} 1 \\
10 x+3-(4 x+5) \\
\square=
\end{gathered} \begin{gathered}
Y 2 \\
6 x-2
\end{gathered}
$$

Sketch the image of the graphs:

List $5 x$-values (t-shirt quantities) and their corresponding y-values (profit amounts) to support your determination.

\mathbf{X} (Number of T-Shirts)	$\mathbf{Y}_{\mathbf{1}}$ (Profit 1)	$\mathbf{Y}_{\mathbf{2}}$ (Profit 2)
1	4	4
2	10	10
3	16	16
4	22	22
5	28	28

For each of the following problems, using a graphing calculator determine whether the expressions are equivalent by using an $=$ or \neq. Sketch the graph to support your answer. List $5 x$-values and their corresponding y-values from the table that support your determination.

Example: $6 x+4-3 x+6 \square \neq 3 x+6$

Graph:

Table:

\mathbf{X}	$\mathbf{Y}_{\mathbf{1}}$	$\mathbf{Y}_{\mathbf{2}}$
-2	4	0
-1	7	3
0	10	6
1	13	9
2	16	12

1. $9 x+4-3 x-2 x+2 \square 4 x+6$

Table:

\mathbf{X}	\mathbf{Y}_{1}	\mathbf{Y}_{2}

$-2 x+1$

Table:

\mathbf{X}	\mathbf{Y}_{1}	$\mathbf{Y}_{\mathbf{2}}$

For each of the following problems, using a graphing calculator determine whether the expressions are equivalent by using an $=$ or \neq. Sketch the graph to support your answer. List $5 x$-values and their corresponding y-values from the table that support your determination.

Example: $6 x+4-3 x+6 \square \neq 3 x+6$

Graph:

Table:

\mathbf{X}	$\mathbf{Y}_{\mathbf{1}}$	$\mathbf{Y}_{\mathbf{2}}$
-2	4	0
-1	7	3
0	10	6
1	13	9
2	16	12

1. $9 x+4-3 x-2 x+2 \square 4 x+6$

Table:

\mathbf{X}	$\mathbf{Y}_{\mathbf{1}}$	$\mathbf{Y}_{\mathbf{2}}$
-1	2	2
0	6	6
1	10	10
2	14	14
3	18	18

2. $-5 x-1+3 x+3 \square \neq-2 x+1$

Table:

\mathbf{X}	$\mathbf{Y}_{\mathbf{1}}$	$\mathbf{Y}_{\mathbf{2}}$
-2	6	5
-1	4	3
0	2	1
1	0	-1
2	-2	-3

Name:

I ndependent Practice score: / 12 correct

For each of the following problems, use a graphing calculator to sketch the graph. Determine whether the expressions are equivalent and list $5 x$-values and their corresponding y-values to support your determination. Circle either EQUIVALENT or NOT EQUIVALENT.
1.

$$
\begin{aligned}
& 3+7 x-13-3 x+5 \\
& 4 x-5
\end{aligned}
$$

Table (2 pts):
$-10 y$

Circle one (2 pts): EQUIVALENT $=\quad$ NOT EQUIVALENT \neq
2.
$-12+4 x+6-2 x+9$
$-6 x+3$

Table (2 pts):

\mathbf{X}	$\mathbf{Y}_{\mathbf{1}}$	$\mathbf{Y}_{\mathbf{2}}$

Circle one (2 pts): EQUIVALENT $\quad=$ NOT EQUIVALENT \neq

For each of the following problems, use a graphing calculator to sketch the graph. Determine whether the expressions are equivalent and list $5 x$-values and their corresponding y-values to support your determination. Circle either EQUIVALENT or NOT EQUIVALENT.
1.

Graph (2 pts):

Table (2 pts):

\mathbf{X}	$\mathbf{Y}_{\mathbf{1}}$	$\mathbf{Y}_{\mathbf{2}}$
-2	-13	-13
-1	-9	-9
0	-5	-5
1	-1	-1
2	3	3

Circle one (2 pts):

NOT EQUIVALENT

2.
$-12+4 x+6-2 x+9$
$-6 x+3$

Table (2 pts):

\mathbf{X}	$\mathbf{Y}_{\mathbf{1}}$	$\mathbf{Y}_{\mathbf{2}}$
-1	1	9
0	3	3
1	5	-3
2	7	-9
3	9	-15

Circle one (2 pts):
EQUIVALENT $=$

1. Simplify the following algebraic expression: (3 pts.)
$5 a-6+3(a+4)$

This means that $5 a-6+3(a+4)$ is equivalent to and I can write the equation:

Using a graphing calculator, graph the expressions, fill in the table of values and determine whether the expressions are equivalent. Circle either EQUIVALENT or NOT EQUIVALENT.
2. $10+3 x-6+2 x-7$

Table (1 pt):

\mathbf{X}	\mathbf{Y}_{1}	$\mathbf{Y}_{\mathbf{2}}$

$5 x-13$

Circle one (2 pts):

1. Simplify the following algebraic expression: (3 pts.)
$5 a-6+3(a+4)$
$5 a-6+3 a+12$ Scoring Key:
$5 a+3 a-6+12 \quad 2$ pts for correct simplification
$8 a+6 \quad 1 \mathrm{pt}$ for correct statement

This means that $5 a-6+3(a+4)$ is equivalent to $8 a+6$ and I can write the equation:

$$
\begin{equation*}
5 a-6+3(a+4) \quad=\quad 8 a+6 \tag{3pts}
\end{equation*}
$$

Using a graphing calculator, graph the expressions, fill in the table of values and determine whether the expressions are equivalent. Circle either EQUIVALENT or NOT EQUIVALENT.
2. $10+3 x-6+2 x-7$

Table (1 pt):

\mathbf{X}	$\mathbf{Y}_{\mathbf{1}}$	$\mathbf{Y}_{\mathbf{2}}$
0	-3	-13
1	2	-8
2	7	-3
3	12	2

Circle one (2 pts):

D emonstration Practice

Properties of Equality and Inverse Operations

$$
2(5)+4 \square 10+4
$$

If we add a number to both expressions, will the expressions remain equivalent?

Add the same number to both expressions.	Add different numbers to both expressions.
$2(5)+4 \square 10+4$	$2(5)+4 \square 10+4$

Multiply both expressions by the same number	Multiply both expressions by different numbers
$2(5)+4 \square 10+4$	$2(5)+4 \quad \square$

Properties of Equality
Addition and Subtraction
\qquad
\qquad
Multiplication and Division
\qquad
\qquad
Inverse Operations

Use the properties of equality and inverse operations to solve the algebraic equation.

1. $x+3=8$

$$
x=
$$

\qquad
2. $n-2=10$

$$
n=
$$

What operation is being performed on the variable, n ? \qquad
What is the inverse of this operation? \qquad
3. $28=14 y$

$$
\ldots=y
$$

What operation is being performed with the variable, y ? \qquad
What is the inverse of this operation? \qquad
4. $\quad \frac{m}{8}=7$

$$
m=
$$

\qquad
What operation is being performed with the variable, m ? \qquad
What is the inverse of this operation?

D emonstration Practice Key

Properties of Equality and Inverse Operations

$$
2(5)+4 \square 10+4
$$

If we add a number to both expressions, will the expressions remain equivalent?

Add the same number to both expressions.	Add different numbers to both expressions.
$\begin{array}{ccc} \begin{array}{c} 2(5)+4 \\ +3 \end{array} & \boxed{=} \quad \begin{array}{c} 10+4 \\ +3 \end{array} \\ 10+4+3=17 & 10+4+3=17 \end{array}$	$\left.\begin{array}{c} 2(5)+4 \\ +2 \end{array} \begin{array}{c} \neq 7 \\ +2+4 \\ +4 \end{array}\right] \begin{gathered} 10+4+4=18 \\ 10+4+2=16 \end{gathered}$

Multiply both expressions by the same number	Multiply both expressions by different numbers		
$\begin{gathered} 3(2(5)+4) \\ 3(10+4) \\ 30+12 \\ 42 \end{gathered}$	$\begin{gathered} 2(2(5)+4) \\ 2(10+4) \\ 20+8 \\ 28 \end{gathered}$	\neq	$\begin{gathered} 4(10+4) \\ 40+16 \\ 56 \end{gathered}$

Properties of Equality
Addition and Subtraction
add or subtract the same number to both expressions in an

equation.

Multiplication and Division
multiply or divide by the same number to both expressions in an
equation.
Inverse Operations
An operation that reverses the effect of another operation.

emonstration Practice Key (cont.)

Use the properties of equality and inverse operations to solve the algebraic equation.
1.

2.

$$
\begin{aligned}
& n-\not y=10 \\
& +A=+2 \\
& \hline n=12
\end{aligned}
$$

What operation is being performed on the variable, n ? subtract 2

What is the inverse of this operation? add 2
3. $\quad \frac{28}{14}=\frac{1.44}{14}$

$$
\begin{aligned}
& 2=1 y \\
& 2=y
\end{aligned}
$$

What operation is being performed with the variable, y ?
What is the inverse of this operation?
4.

$$
\begin{aligned}
& \text { 8. } \frac{p r}{8}=7 \cdot 8 \\
& 1 m \stackrel{1}{=} 56 \\
& m=56
\end{aligned}
$$

What operation is being performed with the variable, m ?

Guided Practice

Use the properties of equality and inverse operations to solve the algebraic equation.

1. $11 c=66$

$$
c=
$$

What operation is being performed with the variable, c ?
What is the inverse of this operation? \qquad
2. $300=150+x$

$$
\ldots=x
$$

What operation is being performed with the variable, x ?
What is the inverse of this operation? \qquad
3. $72=8 b$

$$
=b
$$

What operation is being performed with the variable, b ? What is the inverse of this operation?

Guided Practice

Use the properties of equality and inverse operations to solve the algebraic equation.

1. $\frac{11 c}{11}=\frac{66}{11}$

$$
1 c=6
$$

$$
c=6
$$

What operation is being performed with the variable, c ? multiply by 11

What is the inverse of this operation? divide by 11
2. $300=150+x$

$$
\begin{aligned}
\frac{-150}{150} & =\frac{-150}{x} \\
150 & =x
\end{aligned}
$$

What operation is being performed with the variable, x ?
What is the inverse of this operation?
3. $\frac{72}{8}=\frac{8 b}{8}$
$9=1 b$
$\underline{9}=b$
What operation is being performed with the variable, b ? multiply by 8 What is the inverse of this operation? divide by 8

rror Correction Practice

The following situation is work completed by a student. Explain the error(s) the student made in the work.

Use the properties of equality and inverse operations to solve the algebraic equation.

$$
52=21 x
$$

What operation is being performed with the variable, x ? \qquad What is the inverse of this operation?

$$
52=21 x
$$

$$
x=
$$

\qquad

Write your analysis of this student's work here:

rror Correction Practice Key

The following situation is work completed by a student. Explain the error(s) the student made in the work.

Use the properties of equality and inverse operations to solve the algebraic equation.

$$
52=21 x
$$

What operation is being performed with the variable, x ? multiply by 21 What is the inverse of this operation? subtract 21

$$
\begin{gathered}
52=21 x \\
-21-21 \\
x=31
\end{gathered}
$$

Write your analysis of this student's work here:

Name:

I ndependent Practice
Use the properties of equality and inverse operations to solve the algebraic equation.

1. $36=4 y$

$$
=y \quad(2 \mathrm{pts})
$$

What operation is being performed with the variable, y ?
What is the inverse of this operation?
(1 pt)
2. $\frac{w}{15}=6$

$$
w=\ldots \quad(2 \mathrm{pts})
$$

What operation is being performed with the variable, w ?
\qquad
\qquad

What is the inverse of this operation?
(1 pt)
3. $n+27=57$

$$
n=\ldots \quad(2 \mathrm{pts})
$$

What operation is being performed with the variable, n ?
What is the inverse of this operation?
(1 pt)

I ndependent Practice Key

\qquad / 12 correct

Use the properties of equality and inverse operations to solve the algebraic equation.
1.

$$
\begin{aligned}
\frac{36}{4} & =\frac{4 y}{4} \\
9 & =1 y \\
9 & =y \quad(2 \mathrm{pts})
\end{aligned}
$$

What operation is being performed with the variable, y ? $\frac{\text { multiply by } 4}{(1 \mathrm{pt})}$
What is the inverse of this operation? divide by 4
2. $15 \cdot \frac{w}{15}=6 \cdot 15$

$$
\begin{aligned}
& 1 w=90 \\
& w=90 \\
& \hline
\end{aligned}(2 \mathrm{pts})
$$

What operation is being performed with the variable, w ? \qquad divide by 15

What is the inverse of this operation? $\frac{\text { multiply by } 15}{(1 \mathrm{pt})}$

3. $n+27=57$

$$
\begin{aligned}
& \frac{-22 \quad-27}{30} \\
& n=30 \quad(2 \mathrm{pts})
\end{aligned}
$$

What operation is being performed with the variable, n ? add 27

What is the inverse of this operation? subtract 27 (1 pt)

Using a graphing calculator, graph the expressions and determine whether the expressions are equivalent. Circle either EQUIVALENT or NOT EQUIVALENT.

1. $1-3 x+5+x-3$
$-2 x+3$

NOT EQUIVALENT \neq
Circle one (2 pts): EQUIVALENT $=$
2. Solve: $\quad 3 b=15$
(3 pts.)
$b=$ \qquad
What operation is being performed on b ?
The inverse operation is \qquad

Using a graphing calculator, graph the expressions and determine whether the expressions are equivalent. Circle either EQUIVALENT or NOT EQUIVALENT.

1. $1-3 x+5+x-3$
$-2 x+3$

Table (1 pt):

\mathbf{X}	$\mathbf{Y}_{\mathbf{1}}$	$\mathbf{Y}_{\mathbf{2}}$
-2	7	7
-1	5	5
0	3	3
1	1	1

Circle one (2 pts):

2. Solve:

$$
\frac{3 b}{3}=\frac{15}{3}
$$

(3 pts.)
(1 pt)

$$
\begin{aligned}
1 b & =5 \\
b & =5
\end{aligned}
$$

$3(5)=15$
What operation is being performed on b ? multiply by 3 (1pt)

The inverse operation is divide by 3 (1 pt)

Use the properties of equality and inverse operations to solve the algebraic equation.

1. Solve: $\quad 2 x+3=11$
$X=$ \qquad
What operations are being performed on the variable, x ?
$1^{\text {st }}$
st $2^{\text {nd }}$

What order will you apply the inverse operations?
\qquad
$1^{\text {st }}$
\qquad
$2^{\text {nd }}$
2. Solve: $\quad 3=\frac{a}{2}-4$

$$
\ldots=a
$$

What operations are being performed on the variable, a ?
$1^{\text {st }}$ $2^{\text {nd }}$

What order will you apply the inverse operations?
\qquad
$1^{\text {st }}$
$2^{\text {nd }}$

Demonstration Practice (cont.)

3. Solve: $\quad 20=3 n-4$

$$
\ldots n
$$

What operations are being performed on the variable, n ?
$1^{\text {st }}$ $2^{\text {nd }}$

What order will you apply the inverse operations?
$1^{\text {st }}$ \qquad $2^{\text {nd }}$ \qquad
4. Solve: $\quad \frac{k}{4}+2=5$

$$
k=
$$

\qquad
What operations are being performed on the variable, k ?
\qquad
$1^{\text {st }}$ $2^{\text {nd }}$

What order will you apply the inverse operations?
$1^{\text {st }}$ \qquad $2^{\text {nd }}$

Use the properties of equality and inverse operations to solve the algebraic equation.

1. Solve: $2 x+3=11$

$$
\begin{array}{ll}
\frac{2 x}{2}=\frac{8}{2}-3 \\
1 x & =4 \\
x=4 & 2(4)+3=11
\end{array}
$$

What operations are being performed on the variable, x ?
$1^{\text {st }}$ multiply by 2 $2^{\text {nd }}$ add 3

What order will you apply the inverse operations?
\qquad $2^{\text {nd }} \quad$ divide by 2
2. Solve:

$$
\begin{aligned}
& 3=\frac{a}{2} \\
&+4 \\
& \frac{+4}{2 \cdot 7}=\frac{4}{2} \\
& 14=1 a \\
& 14=a \\
& \hline
\end{aligned}
$$

What operations are being performed on the variable, a ?
$1^{\text {st }}$ divide by 2 $2^{\text {nd }}$ subtract 4

What order will you apply the inverse operations?
$1^{\text {st }} \quad$ add 4
$2^{\text {nd }}$
multiply by 2

Demonstration Practice Key (cont.)

3. Solve:

$$
\begin{aligned}
& 20=3 n+4 \\
& \frac{+4}{\frac{24}{3}}=\frac{4 n}{3 n} \\
& 8=1 n \\
& 8=n \\
& 8=n
\end{aligned}
$$

What operations are being performed on the variable, n ?
$1^{\text {st }} \quad$ multiply by 3 $2^{\text {nd }} \quad$ subtract 4

What order will you apply the inverse operations?
\qquad $2^{\text {nd }} \quad$ divide by 3
4. Solve:

What operations are being performed on the variable, k ?
$1^{\text {st }} \quad$ divide by $4 \quad 2^{\text {nd }} \quad$ add 2
What order will you apply the inverse operations?
$1^{\text {st }}$ \qquad subtract 2
$2^{\text {nd }}$ multiply by 4

Pair Practice

With a partner, use the properties of equality and inverse operations to solve the algebraic equations. Be prepared to justify your work.

1. Solve: $5=3 m-4$

$$
\ldots=m
$$

What operations are being performed on the variable, m ?
$1^{\text {st }}$ $2^{\text {nd }}$

What order will you apply the inverse operations?
$1^{\text {st }}$ \qquad $2^{\text {nd }}$
2. Solve: $\quad \frac{p}{3}+2=7$

$$
p=
$$

What operations are being performed on the variable, p ?
$1^{\text {st }}$ \qquad $2^{\text {nd }}$

What order will you apply the inverse operations?
$1^{\text {st }}$
$2^{\text {nd }}$
ractice Key

Pair Practice

With a partner, use the properties of equality and inverse operations to solve the algebraic equations. Be prepared to justify your work.

1. Solve:

$$
\begin{aligned}
& 5=3 m+4 \\
& \frac{+4}{9}=\frac{3 n}{3} \frac{44}{3} \\
& 3=1 m \\
& 3=m \\
& 3
\end{aligned}
$$

What operations are being performed on the variable, m ?
$1^{\text {st }} \quad$ multiply by $3 \quad 2^{\text {nd }} \quad$ subtract 4
What order will you apply the inverse operations?
$1^{\text {st }}$ add 4
$2^{\text {nd }} \quad$ divide by 3
2. Solve:

$$
\begin{gathered}
\frac{p}{3}+2=7 \\
\frac{2}{2}=\frac{-2}{3 \cdot 3}=\frac{5}{3}= \\
1 p=15 \\
p=15
\end{gathered}
$$

What operations are being performed on the variable, p ?
\qquad
What order will you apply the inverse operations?
$1^{\text {st }}$
subtract 2
$2^{\text {nd }}$ multiply by 3

E rror Correction Practice

With a partner, examine the following work. The given situation is work completed by a student. Explain the error(s) the student made in the work.

Use the properties of equality and inverse operations to solve the algebraic equation.

$$
1=3 x-14
$$

What operations are being performed on the variable, x ?
$1^{\text {st }}$
$2^{\text {nd }}$

What order will you apply the inverse operations?
$1^{\text {st }}$
$2^{\text {nd }}$

rror Correction Practice Key

With a partner, examine the following work. The given situation is work completed by a student. Explain the error(s) the student made in the work.

Use the properties of equality and inverse operations to solve the algebraic equation.

$$
\begin{aligned}
& 1=3 x-14 \\
& \frac{-14-14}{-13=3 x} \\
& -13 \cdot 3=3 x \cdot 3 \\
& -39=x
\end{aligned}
$$

What operations are being performed on the variable, x ?
$1^{\text {st }} \quad$ multiply by $3 \quad 2^{\text {nd }} \quad$ subtract 14

What order will you apply the inverse operations?
$1^{\text {st }} \quad$ subtract $14 \quad 2^{\text {nd }} \quad$ multiply by 3

The students inverse operations were incorrect.
The student should have added 14 then divided by 3.

Name:

I ndependent Practice Score: / 14 correct

Use the properties of equality and inverse operations to solve the algebraic equation.

1. Solve: $\quad 11=\frac{y}{5}+2 \quad$ (7 pts.)

$$
\ldots=y
$$

What operations are being performed on the variable, y ?
$1^{\text {st }}$
\qquad $2^{\text {nd }}$

What order will you apply the inverse operations?
$1^{\text {st }}$ \qquad $2^{\text {nd }}$
2. Solve: $6 x-3=45$ (7 pts.)

$$
x=
$$

\qquad
What operations are being performed on the variable, x ?
$1^{\text {st }}$ \qquad $2^{\text {nd }}$

What order will you apply the inverse operations?
$1^{\text {st }}$ \qquad $2^{\text {nd }}$ \qquad

I ndependent Practice Key

Score: \qquad / 14 correct

Use the properties of equality and inverse operations to solve the algebraic equation.

1. Solve:

$$
\begin{align*}
& 11=\frac{y}{5}+2 \tag{7pts.}\\
& \frac{-2}{5} \cdot 9=\frac{y}{5} \cdot 5 \\
& 45=1 y \\
& 45=y
\end{align*}
$$

What operations are being performed on the variable, y ?
$1^{\text {st }}$ divide by 5
$2^{\text {nd }}$ add 2

What order will you apply the inverse operations?
\qquad $2^{\text {nd }} \quad$ multiply by 5
2. Solve:

$$
\begin{align*}
& 6 x-3=45 \tag{7pts.}\\
& \frac{43}{6 x /}=\frac{48}{6} \\
& 1 x=8 \\
& x=45
\end{align*}
$$

What operations are being performed on the variable, x ?
$1^{\text {st }} \quad$ multiply by $6 \quad 2^{\text {nd }} \quad$ subtract 3
What order will you apply the inverse operations?
\qquad $2^{\text {nd }}$
divide by 6
\qquad / 10 correct

1. Solve: $\quad 7=\frac{b}{4}$
(3 pts.)
$b=$ \qquad
What operation is being performed on b ? \qquad
The inverse operation is \qquad
2. Solve: $10=6 r+4 \quad$ (7 pts.)

$$
\ldots=r
$$

What operations are being performed on the variable, r ?
$1^{\text {st }}$ $2^{\text {nd }}$

What order will you apply the inverse operations?
$1^{\text {st }}$
$2^{\text {nd }}$

1. Solve:

$$
\begin{aligned}
7 & =\frac{b}{4} \\
4 \cdot 7 & =\frac{b}{4} \cdot 4 \\
28 & =1 b \\
b & =28
\end{aligned}
$$

(3 pts.) Scoring Key
1 pt for solving
2 pts for blanks

What operation is being performed on b ? divided by $4, \div 4$

The inverse operation is multiplied by 4,.4
2. Solve: $\quad 10=6 r+4$

(7 pts.) Scoring Key 3 pts for solving 1 pt per blank

What operations are being performed on the variable, r ?
$1^{\text {st }}$ \qquad $2^{\text {nd }}$
$+4$
What order will you apply the inverse operations?
$1^{\text {st }}$
-4
$2^{\text {nd }}$
$+6$

1. Solve: $2 x+3=5 x$

Check using substitution:

$$
2(\quad)+3=5(\quad)
$$

$$
\ldots=x
$$

Collect the variables on 1 side by: \qquad
What operation is being performed? \qquad
What is the inverse operation? \qquad

Questions to ask when solving:

1. \qquad
2. \qquad
3. \qquad
4. Solve: $\quad-9 y=-7+4$

Check using substitution:
$-9(\quad)=-7(\quad)+4$
$y=$ \qquad
Collect the variables on 1 side by: \qquad
3. Solve: $2 m=6 m+4$

Check using substitution:
$2(\quad)=6(\quad)+4$
$m=$ \qquad
Collect the variables on 1 side by: \qquad
4. Solve: $\quad 4 n-5=3 n$

Check using substitution:
$4(\quad)-5=3(\quad)$
$\ldots=n$
Collect the variables on 1 side by: \qquad

D emonstration Practice Key

1. Solve:

Check using substitution:

$$
\begin{aligned}
2(1)+3 & =5(1) \\
2+3 & =5 \\
5 & =5 \text { true }
\end{aligned}
$$

Collect the variables on 1 side by: \qquad subtracting $2 x,-2 x$

What operation is being performed? \qquad multiply by $3, \cdot 3$ divide by $3, \div 3$

Questions to ask when solving:
1.

What operations are being performed on the variable?
2. \qquad
3. What order do we perform the inverse operations?
2. Solve: $\quad-9 y=-7+4$

$$
\frac{+7 y}{\frac{-2 y y}{-2}}=\frac{+\pi}{-2}
$$

$1 y=-2$
$y=-2$

Check using substitution:
$-9(-2)=-7(-2)+4$
$18=14+4$
$18=18$ true

Collect the variables on 1 side by: add $7 y,+7 y$

Demonstration Practice Key (cont.)

3. Solve:

$$
\begin{array}{rlrl}
2 m & =6 p n+4 & & \text { Check using substitution: } \\
\frac{-6 m}{-4 m} & =\frac{-6 n}{-4} & & 2(-1)=6(-1)+4 \\
1 m & =-1 & -2=-6+4 \\
m & =-1 & -2=-2 \text { true }
\end{array}
$$

Collect the variables on 1 side by: subtract $6 m,-6 m$
4. Solve:

$$
\begin{aligned}
4 n-5 & =3 n \\
\frac{-4 n}{\frac{-5}{-1}} & =\frac{-4 n}{-1 n} \\
5 & =1 n \\
5 & =n
\end{aligned}
$$

Check using substitution:

$$
\begin{aligned}
4(5)-5 & =3(5) \\
20-5 & =15 \\
15 & =15 \text { true }
\end{aligned}
$$

Collect the variables on 1 side by: subtract $4 n,-4 n$

Pair Practice

With a partner, use the properties of equality and inverse operations to solve the algebraic equations. Check all answers and be prepared to justify your answer.

1. Solve: $\quad 2 a-16=4 a$

Check using substitution:
2()$-16=4(\quad)$
$\ldots=a$
Collect the variables on 1 side by: \qquad
2. Solve: $2 c=3 c-4$

Check using substitution:
2()$=3()-4$
$c=$ \qquad
Collect the variables on 1 side by: \qquad
ractice Key

Pair Practice

With a partner, use the properties of equality and inverse operations to solve the algebraic equations. Check all answers and be prepared to justify your answer.

1. Solve:

$$
\begin{aligned}
2 a-16 & =4 a \\
\frac{-2 a}{\frac{-16}{2}} & =\frac{\frac{-2 a}{2 a}}{2} \\
-8 & =1 a \\
-8 & =a
\end{aligned}
$$

Check using substitution:

$$
\begin{aligned}
2(-8)-16 & =4(-8) \\
-16-16 & =-32 \\
-32 & =-32 \text { true }
\end{aligned}
$$

Collect the variables on 1 side by:

$$
-2 a
$$ -2a

Check using substitution:

$$
\begin{aligned}
2(4) & =3(4)-4 \\
8 & =12-4 \\
8 & =8 \text { true }
\end{aligned}
$$

Collect the variables on 1 side by: $-3 c$

rror Correction Practice

The given situation is work completed by a student. Explain the error(s) the student made in the work.

$$
3 a-5=2 a
$$

Collect the variables on 1 side by: \qquad
Once the variable is separatedwhat operation is being performed?

What is the needed inverse operation?

$$
\begin{array}{ll}
3 a-5=2 a & \begin{array}{l}
\text { Check using substitution: } \\
3(\quad)-5=2(\quad) \\
\\
=a
\end{array} \\
\hline
\end{array}
$$

rror Correction Practice Key
The given situation is work completed by a student. Explain the error(s) the student made in the work.

$$
3 a-5=2 a
$$

Collect the variables on 1 side by: subtracting 3a

Once the variable is separatedwhat operation is being performed? multiplication

What is the needed inverse operation?
divide by +1

$$
\begin{array}{rlrl}
3 a-5 & =2 a & \text { Check using substitution: } \\
-3 a & -3 a & 3(-5)-5 & =2(-5) \\
\frac{-5}{1} & =\frac{-1 a}{1} & -15-5 & =-10 \\
-10 & =-10 \\
-5 & =a &
\end{array}
$$

The student divided by 1 insteading of dividing by -1 .
The solution is $a=5$. In checking the work, the student
subtracted incorrectly. $-15-5=-20$ not -10 .

Name:

I independent Practice

Use the properties of equality and inverse operations to solve the algebraic equation. Check your answer to justify your work.

1. Solve: $\quad 3 x-18=6 x \quad$ (7 pts) \quad Check using substitution:

$$
\begin{array}{ll}
& 3(\quad)-18=4(\quad) \\
& =x
\end{array}
$$

Collect the variables on 1 side by: \qquad
2. Solve: $\quad 3 r=r+8 \quad(7$ pts $) \quad$ Check using substitution:

$$
\begin{aligned}
& 3(\quad)=(\quad)+8 \\
& r=
\end{aligned}
$$

Collect the variables on 1 side by: \qquad

I ndependent Practice Key

\qquad / 14 correct

Use the properties of equality and inverse operations to solve the algebraic equation. Check your answer to justify your work.

1. Solve:

$$
\begin{align*}
3 x-18 & =6 x \tag{7pts}\\
\frac{3 x}{-3 x} & =\frac{-3 x}{3 x} \\
-6 & =1 x \\
-6 & =x
\end{align*}
$$

Check using substitution:

$$
\begin{aligned}
3(-6)-18 & =4(-6) \\
-18-18 & =-36 \\
-36 & =-36 \text { true (} 2 \text { pts })
\end{aligned}
$$

Collect the variables on 1 side by: \qquad $-3 x \quad$ (1 pt)
2. Solve:

$$
\begin{aligned}
3 r & =X+8 \\
\frac{-r}{2 r} & =\frac{-x}{8} \\
\frac{1 r}{2} & =4 \\
r & =4
\end{aligned}
$$

(7 pts) Check using substitution:

$$
3(4)=(4)+8
$$

$$
12=4+8
$$

$$
12=12 \text { true (2 pts) }
$$

Collect the variables on 1 side by: $-r \quad(1 \mathrm{pt})$

umulative Review Practice

Score: \qquad / 12 correct

1. Solve: $7 x-18=10 \quad$ (7 pts.)

$$
x=
$$

\qquad
What operations are being performed on the variable, x ?
$1^{\text {st }}$ $2^{\text {nd }}$

What order will you apply the inverse operations?
$1^{\text {st }}$
$2^{\text {nd }}$ \qquad
2. Solve: $-4 x=3 x+14$ (5 pts) \quad Check using substitution:

$$
-4(\quad)=3(\quad)+14
$$

$$
x=
$$

\qquad
Collect the variables on 1 side by: \qquad

C umulative Review Practice Key
 1. Solve:
 $$
\begin{gathered} 7 x-18=10 \\ \frac{+18}{7 x}=\frac{+18}{7} \\ =\frac{28}{7} \\ 1 x=4 \\ x=4 \end{gathered}
$$
 (7 pts.) Scoring Key
 3 pts for solving
 1 pt per blank

\qquad

What operations are being performed on the variable, x ?
$1^{\text {st }}$
. 7
$2^{\text {nd }}$

- 18

What order will you apply the inverse operations?
\qquad
$1^{\text {st }}$ $2^{\text {nd }}$ \qquad
2. Solve: $\quad-4 x=3 x+14$ (5 pts) Check using substitution:

$$
\begin{align*}
\frac{-3 x}{-7 x} & =\frac{-3 x}{\frac{14}{-7}} \\
1 x & =-2 \tag{1pt}\\
x & =-2
\end{align*}
$$

$$
\begin{aligned}
-4(-2) & =3(-2)+14 \\
8 & =-6+14 \\
8 & =8 \quad(1
\end{aligned}
$$

Collect the variables on 1 side by: \qquad $-3 x \quad$ (1 pt)

1. Solve: $\quad 2 b+16=6 b-8 \quad$ Check using substitution:

$$
\begin{array}{ll}
& 2()+16=6(~)-8 \\
& =b
\end{array}
$$

Collect the variables on 1 side by: \qquad
List operations performed on the variable:
$1^{\text {st }}$
$2^{\text {nd }}$
List inverse operations that will be required:
\qquad
$2^{\text {nd }}$ \qquad
2. Solve: $\quad 2 b+16=6 b-8$

Check using substitution:

$$
2(\quad)+16=6(\quad)-8
$$

$b=$ \qquad
Collect the variables on 1 side by: \qquad
3. Solve: $\quad 4 a-6=5 a+21$

Check using substitution:
$2(\quad)-6=5(\quad)+21$

$$
\ldots=a
$$

4. Solve: $\quad-m+24=-5 m-40$

Check using substitution:

$$
-(\quad)+24=-5(\quad)-40
$$

$$
m=
$$

\qquad

D emonstration Practice Key

1. Solve:

$$
\begin{aligned}
2 b+16 & =6 b-8 \\
\frac{2 b}{16} & =\frac{-2 b}{4 b-8} \\
\frac{+8}{\frac{24}{4}} & =\frac{+8}{4} \\
6 & =1 b \\
6 & =b
\end{aligned}
$$

Check using substitution:

$$
2(6)+16=6(6)-8
$$

$12+16=36-8$ $28=28$ true

Collect the variables on 1 side by: subtracting $2 b$

List operations performed on the variable:
$1^{\text {st }}$
. 4
$2^{\text {nd }}$

- 8

List inverse operations that will be required:
\qquad $2^{\text {nd }}$ \qquad
2. Solve

$$
\begin{aligned}
2 b+16 & =6 b-8 \\
\frac{-6 b}{-4 \mathrm{~b}}+16 & \frac{-6 b}{=-8} \\
\frac{-16}{-4} & =\frac{-16}{-24} \\
\frac{-4 \mathrm{~b}}{-4} & \\
1 \mathrm{~b} & =6 \\
b & =6
\end{aligned}
$$

Check using substitution:

$$
\begin{aligned}
2(6)+16 & =6(6)-8 \\
12+16 & =36-8 \\
28 & =28 \text { true }
\end{aligned}
$$

Collect the variables on 1 side by: subtracting 6b

Demonstration Practice Key (cont.)

3. Solve:

$$
\begin{aligned}
& 4 a-6=5 a+21 \\
& \frac{4 a}{-6}=\frac{-4 a}{1 a+21} \\
&-6=a+2 x \\
& \frac{-21}{-27}=a \\
&-27=a \\
& \hline
\end{aligned}
$$

Check using substitution:

$$
\begin{aligned}
2(-27)-6 & =5(-27)+21 \\
-108-6 & =-135+21 \\
-114 & =-114 \quad \text { true }
\end{aligned}
$$

Check using substitution:

$$
\begin{aligned}
-(-16)+24 & =-5(-16)-40 \\
16+24 & =80-40 \\
40 & =40 \quad \text { true }
\end{aligned}
$$

4. Solve:

$$
\begin{aligned}
&-m+24=-5 m-40 \\
&+5 m+5 m \\
& 4 m+24=\frac{+40}{\frac{-24}{4}} \\
& \frac{-24}{4} \\
& 1 m=\frac{-16}{-64} \\
& m=-16
\end{aligned}
$$

Pair Practice

With a partner, discuss the process and solve the algebraic equations using inverse operation. Each partner will be labeled, one A and the other B. Alternate the steps to solve the equations.

1. Solve:$\frac{-1 p-27=2 p-9}{+1 p}-27=3 p-9$ $-27=3 p-9$	Example
	Partner A
	Partner B
Check solution:	Partner A
Answer:	Partner B

2. Solve: $7 x-6=4 x+\underline{18}$	Partner A
	Partner B
	Partner A
Check solution:	Partner B
Answer:	Partner A

ractice Key

Pair Practice

With a partner, discuss the process and solve the algebraic equations using inverse operation. Each partner will be labeled, one A and the other B.
Alternate the steps to solve the equations.

1. Solve: $\quad \begin{aligned} &-1 p-27=2 p-9 \\ & \frac{+1 p}{}+1 p \\ &-27=3 p-9\end{aligned}$	Example
$\begin{aligned} & -27=3 p-9 \\ & \frac{+9}{-18}=\frac{\not 99}{3 p} \end{aligned}$	Partner A
$\begin{aligned} \frac{-18}{3} & =\frac{3 p}{3} \\ -6 & =1 p \end{aligned}$	Partner B
Check solution: $\begin{aligned} -1(-6)-27 & =2(-6)-9 \\ 6-27 & =-12-9 \\ -21 & =-21 \quad \text { true } \end{aligned}$	Partner A
Answer: $\quad p=-6$	Partner B

2. Solve: $\begin{aligned} & 7 x-6=4 x+18 \\ & \frac{-4 x}{3 x}-6=\frac{-4 x}{18}\end{aligned}$	Partner A
$\begin{aligned} & 3 x-6=18 \\ & \frac{+6}{3 x}=\frac{+6}{24} \end{aligned}$	Partner B
$\begin{aligned} \frac{3 x}{3} & =\frac{24}{3} \\ 1 x & =8 \end{aligned}$	Partner A
Check solution: $\begin{aligned} 7(8)-6 & =4(8)+18 \\ 56-6 & =32+18 \\ 50 & =50 \quad \text { true } \end{aligned}$	Partner B
Answer: $\quad x=8$	Partner A

rror Correction Practice

The given situation is work completed by a student. Explain the error(s) the student made in the work.

$$
\text { Solve: }-7 x-6=4 x+9
$$

Collect the variables on 1 side by:
List operations performed on the variable:
\qquad
$1^{\text {st }}$
$2^{\text {nd }}$
List inverse operations that will be required:
$1^{\text {st }}$
$2^{\text {nd }}$
$-7 x-6=4 x+9 \quad$ Check using substitution:

$$
-7(\quad)-6=4(\quad)+9
$$

$$
\ldots=x
$$

rror Correction Practice Key
The given situation is work completed by a student. Explain the error(s) the student made in the work.

Solve: $-7 x-6=4 x+9$
Collect the variables on 1 side by: subtracting $7 x$

List operations performed on the variable:
\qquad
$1^{\text {st }}$

- 3
$2^{\text {nd }}$ $+9$

List inverse operations that will be required:
$1^{\text {st }}$

- 9
$-7 x-6=4 x+9$
$-7 x-7 x$

$$
\begin{array}{rlrl}
6 & =3 x+9 & -7(-1)-6 & =4(-1)+9 \tag{9}\\
-9 & -9 & & \\
\frac{-3}{3} & =\frac{3 x}{3} &
\end{array}
$$

$2^{\text {nd }}$ $\div 3$

Check using substitution:

$$
\underline{-1}=x
$$

The student should have added $7 x$ to collect variables on the right side. The checking proves there was an error
in solving because $1=5$ is not a true statement.

Name:

\qquad

I ndependent Practice

 Score: / 15 correctUse the properties of equality and inverse operations to solve the algebraic equation. Check your answer to justify your work.

1. Solve: $\quad-2 r+15=2 r-5 \quad$ (5 pts) \quad Check using substitution:

$$
-2(\quad)+15=2(\quad)-5
$$

$$
\ldots=r
$$

2. Solve: $\quad 4 z+11=z+29$
(5 pts) Check using substitution:

$$
4(\quad)+11=(\quad)+29
$$

$$
z=
$$

\qquad
3. Solve: $\quad-6 b-20=-3 b-11$ (5 pts) Check using substitution:

$$
-6(\quad)-20=-3(\quad)-11
$$

$$
=b
$$

\qquad / 15 correct

Use the properties of equality and inverse operations to solve the algebraic equation. Check your answer to justify your work.

1. Solve: $\quad-2 r+15=2 r-5$

$$
\begin{align*}
\frac{+2 r}{15} & =\frac{+2 r}{4 r-5} \tag{5pts}\\
\frac{+5}{\frac{20}{4}} & =\frac{+5}{4} \\
5 & =1 r \\
5 & =r
\end{align*}
$$

Check using substitution:
$-2(5)+15=2(5)-5$
$-10+15=10-5$ $5=5$ true
(1 pt)
(4 pts)
2. Solve:

$$
\begin{aligned}
4 z+11 & =\langle z+29 \\
\frac{-z}{3 z+1 z} & =\frac{-2}{29} \\
\frac{-11}{} & =\frac{-11}{18} \\
\frac{3 z}{3} & \\
1 z & =6 \\
z & =6
\end{aligned}
$$

(5 pts) Check using substitution:
$4(6)+11=(6)+29$ $24+11=6+29$ $35=35$ true
(1 pt)
(4 pts)
3. Solve:

$$
\begin{align*}
-6 b-20 & =-3 b-11 \tag{5pts}\\
\frac{+6 b}{-20} & =\frac{+6 b}{3 b-11} \\
\frac{+11}{\frac{-9}{3}} & =\frac{3 b}{3} \\
-3 & =1 b \\
-3 & =b
\end{align*}
$$

Check using substitution:

$$
-6(-3)-20=-3(-3)-11
$$

$$
18-20=9-11
$$

$$
-2=-2 \text { true }
$$

(1 pt)
(4 pts)

1. Solve: $\quad 8 x=6 x-16$
(4 pts) Check using substitution:
$8(\quad)=6(\quad)-16$

$$
x=
$$

2. Solve: $\quad v+8=3 v-4$ (5 pts) Check using substitution:

$$
(\quad)+8=3(\quad)-4
$$

$$
=V
$$

1. Solve:

$$
\begin{align*}
& 8 x=6 x-16 \tag{1pt}\\
& \frac{-6 x}{\frac{2 x}{2}}=\frac{-16}{2}
\end{align*}
$$

(4 pts)
Check using substitution:
$8(-8)=6(-8)-16$
$-64=-48-16$
$-64=-64$ true
2. Solve:

$$
\begin{align*}
Y(8+8 & =3 v-4 \\
\frac{7-v}{8} & =\frac{-v}{2 v+4} \\
\frac{+4}{\frac{12}{2}} & =\frac{2 v}{2} \tag{4pts}\\
6 & =1 v \\
6 & =v
\end{align*}
$$

$(6)+8=3(6)-4$
$6+8=18-4$ $14=14$ true

D emonstration Practice

1. Solve: $x-6=3 x-4 \quad Y_{1}=\quad Y_{2}=$ \qquad
1 - Use 0 to enter the expressions into the calculator (remember to make the second graph bold)

2 - Press GRAPH to see if and where the two expressions are equal.
3 - Sketch what you see here:

Estimated ordered pair of intersection
4 - Press 2nd and then TRACE to access the "CALC" menu. Select option 5:intersect.
Answer the questions posed by the calculator by pressing ENTER.
Calculated ordered pair of intersection \qquad
5 - Use the table to verify - press 2nd and GRAPH
Fill in the table here using what is displayed on your calculator:

\mathbf{X}	$\mathbf{Y}_{\mathbf{1}}$	$\mathbf{Y}_{\mathbf{2}}$
-3		
-2		
-1		
0		
1		

6 - Check using substitution:
Solution: $x=$ \qquad
() - $6=3(\quad)-4$

Demonstration Practice (cont.)

2. Solve: $-2 b+8=6 b-8$
$Y_{1}=$
$Y_{2}=$
\qquad
\qquad
Estimated Ordered Pair:

Calculated Ordered Pair:

In the graph and the table, $x=$ \qquad
therefore b must equal: \qquad
3. Solve: $3 a+3=5 a+1$

$$
\begin{aligned}
& Y_{1}= \\
& Y_{2}= \\
&
\end{aligned}
$$

Estimated Ordered Pair:

Calculated Ordered Pair:

In the graph and the table, $x=$ \qquad

Sketch the graph:

Fill in the table:

\mathbf{X}	$\mathbf{Y}_{\mathbf{1}}$	$\mathbf{Y}_{\mathbf{2}}$
-1		
0		
1		
2		
3		

Circle the row where $Y_{1}=Y_{2}$
therefore a must equal: \qquad

Demonstration Practice Key

1. Solve: $x-6=3 x-4 \quad Y_{1}=\underline{x-6} \quad Y_{2}=\underline{3 x-4}$

1 - Use 0 to enter the expressions into the calculator (remember to make the second graph bold)

2 - Press GRAPH to see if and where the two expressions are equal.
3 - Sketch what you see here:

Estimated ordered pair of intersection
answers will vary
4 - Press 2nd and then TRACE to access the "CALC" menu. Select option 5:intersect.
Answer the questions posed by the calculator by pressing ENTER.
Calculated ordered pair of intersection \qquad
5 - Use the table to verify - press 2nd and GRAPH
Fill in the table here using what is displayed on your calculator:

\mathbf{X}	$\mathbf{Y}_{\mathbf{1}}$	$\mathbf{Y}_{\mathbf{2}}$
-3	-9	-13
-2	-8	-10
-1	-7	-7
0	-6	-4
1	-5	-1

What do you notice about the relationship between the y-values in each column?

When $x=-1$, then Y_{1} is equal to Y_{2}.
If $x=-1, Y_{1}=Y_{2}$.
When $x=-1$, then $x-6=3 x-4$.

6 - Check using substitution:
Solution: $x=\underline{-1}$
(-1) - $6=3(-1)-4$
$-1-6=-3-4$
$-7=-7$ true

Demonstration Practice Key (cont.)

2. Solve: $-2 b+8=6 b-8$

$$
\begin{aligned}
& Y_{1}=-2 x+8 \\
& Y_{2}=6 x-8
\end{aligned}
$$

Estimated Ordered Pair:

answers will vary
Calculated Ordered Pair:
$(2,4)$
In the graph and the table, $x=2$
therefore b must equal: \qquad 2

Check using substitution:

$$
\begin{aligned}
-2(2)+8 & =6(2)-8 \\
-4+8 & =12-8 \\
4 & =4 \quad \text { true }
\end{aligned}
$$

Sketch the graph:
Fill in the table:

\mathbf{X}	$\mathbf{Y}_{\mathbf{1}}$	$\mathbf{Y}_{\mathbf{2}}$
$-\mathbf{1}$	0	-4
0	3	1
$\mathbf{1}$	6	6
$\mathbf{2}$	9	11
$\mathbf{3}$	12	16

Circle the row where $Y_{1}=Y_{2}$

Sketch the graph:

Y2

In the graph and the table, $x=\underline{1}$
therefore a must equal: $\quad 1$
3. Solve: $3 a+3=5 a+1$

$$
\begin{aligned}
& Y_{1}=\frac{3 x+3}{5 x+1} \\
& Y_{2}=3
\end{aligned}
$$

Estimated Ordered Pair:

answers will vary

Calculated Ordered Pair:

$(1,6)$

Circle the row where $Y_{1}=Y_{2}$
Fill in the table:

\mathbf{X}	$\mathbf{Y}_{\mathbf{1}}$	$\mathbf{Y}_{\mathbf{2}}$
$\mathbf{0}$	8	-8
1	6	-2
$\mathbf{2}$	4	4
3	2	10
$\mathbf{4}$	0	16

Solution:
$b=4$

Check using substitution: Solution:

$$
\begin{aligned}
3(1)+3 & =5(1)+1 \\
3+3 & =5+1
\end{aligned}
$$

Guided Practice

Solve each equation using the indicated method.

1. Solve using the table: Fill in the table:

$$
\begin{aligned}
& -1 p-27=2 p-9 \\
& Y_{1}= \\
& Y_{2}= \\
& \hline
\end{aligned}
$$

Circle the row where $Y_{1}=Y_{2}$
According to this row in the table, $x=$ \qquad
therefore p must equal: \qquad

\mathbf{X}	$\mathbf{Y}_{\mathbf{1}}$	$\mathbf{Y}_{\mathbf{2}}$
-8		
-7		
-6		
-5		
-4		

Solution:
$p=$ \qquad
2. Solve using a graph:

$$
4 n-7=-4 n+9
$$

$$
Y_{1}=
$$

$$
Y_{2}=
$$

\qquad
Estimated ordered pair _ *
Calculated ordered pair \qquad
According to intersection
of the graphs, $x=$ \qquad ,
therefore n must equal: \qquad

Sketch the graphs here:

Solution:
$n=$ \qquad

Check using substitution:

$$
4(\quad)-7=-4(\quad)+9
$$

P ractice (cont.)

Pair Practice

With a partner, solve each equation using the indicated method. Be prepared to justify your answer.

1. Solve using the table:

$$
\begin{aligned}
& -4 u-7=4 u+9 \\
& Y_{1}= \\
& Y_{2}= \\
& \hline
\end{aligned}
$$

According to the table, the solution is when $x=$ \qquad

\mathbf{X}	$\mathbf{Y}_{\mathbf{1}}$	$\mathbf{Y}_{\mathbf{2}}$
-4		
-3		
-2		
-1		
0		

2. Solve using a graph:

$$
3 w+2=-9 w+2
$$

$$
Y_{1}=
$$

$$
Y_{2}=
$$

\qquad

According to intersection of the graphs, $x=$ \qquad ${ }^{\prime}$

Sketch the graphs here:

Check using substitution:
$3(\quad)+2=-9(\quad)+2$

Solution:
$w=$ \qquad therefore w must equal: \qquad

Guided Practice

Solve each equation using the indicated method.

1. Solve using the table:

$$
\begin{aligned}
& Y_{1}=-1 x-27 \\
& Y_{2}=2 x-9
\end{aligned}
$$

Circle the row where $Y_{1}=Y_{2}$
According to this
row in the table, $x=\underline{-6}$
therefore p must equal: $\quad-6$

Fill in the table:

\mathbf{X}	$\mathbf{Y}_{\mathbf{1}}$	$\mathbf{Y}_{\mathbf{2}}$
-8	-19	-25
-7	-20	-23
-6	-21	-21
-5	-22	-19
-4	-23	-17

Solution:
$p=\underline{-6}$
2. Solve using a graph:

Estimated ordered pair \qquad
Calculated ordered pair $(2,1)$
According to intersection
of the graphs, $x=2$,

Sketch the graphs here:

Solution:
$n=\underline{2}$
therefore n must equal: \qquad
*answers will vary

Check using substitution:

$$
\begin{aligned}
-1(-6)-27 & =2(-6)-9 \\
6-27 & =-12-9 \\
-21 & =-21 \quad \text { true }
\end{aligned}
$$

Check using substitution:

$$
\begin{aligned}
4(2)-7 & =-4(2)+9 \\
8-7 & =-8+9 \\
1 & =1 \quad \text { true }
\end{aligned}
$$

ractice Key (cont.)

Pair Practice

With a partner, solve each equation using the indicated method. Be prepared to justify your answer.

1. Solve using the table:

$$
\begin{aligned}
& Y_{1}=-4 x-7 \\
& Y_{2}=4 x+9
\end{aligned}
$$

According to the table, the solution is when $x=-2$
therefore u must equal: $\quad-2$
2. Solve using a graph:

$$
\begin{aligned}
& Y_{1}=3 x+2 \\
& Y_{2}=-9 x+2
\end{aligned}
$$

According to intersection of the graphs, $x=\underline{0^{\prime}}$, therefore w must equal: \qquad

Fill in the table: Check using substitution:

\mathbf{X}	$\mathbf{Y}_{\mathbf{1}}$	$\mathbf{Y}_{\mathbf{2}}$	
-4	9	-7	
-3	5	-3	
-2	1	1	
-1	-3	5	
0	-7	9	
Solution:			

$u=\underline{-2}$

$$
\begin{aligned}
-4(-2)-7 & =4(-2)+9 \\
8-7 & =-8+9 \\
1 & =1 \quad \text { true }
\end{aligned}
$$

Sketch the graphs here:

Solution:

$$
w=0
$$

Check using substitution:

$$
\begin{aligned}
3(0)+2 & =-9(0)+2 \\
0+2 & =0+2 \\
2 & =2 \text { true }
\end{aligned}
$$

Name:

ndependent Practice
Solve each equation using the indicated method.

1. Solve using the table: (7 pts.)
$5 x-4=-2 x-4$
$Y_{1}=$
$Y_{2}=$ \qquad

According to the table, the solution is when $x=$ \qquad
Fill in the table:

\mathbf{X}	$\mathbf{Y}_{\mathbf{1}}$	$\mathbf{Y}_{\mathbf{2}}$
-2		
-1		
0		
1		
2		

therefore x must equal: \qquad
2. Solve using a graph:
$2 c+4=-2 c-4$

$$
\begin{aligned}
& Y_{1}= \\
& Y_{2}= \\
&
\end{aligned}
$$

According to intersection of the graphs, $x=$ \qquad ,
therefore c must equal: \qquad
(7 pts.)
Sketch the graphs here:

Solution:
$c=$ \qquad

I ndependent Practice Key

\qquad
Solve each equation using the indicated method.

1. Solve using the table:

$$
\begin{aligned}
& Y_{1}=\frac{5 x-4}{-2 x-4} \\
& Y_{2}=-2
\end{aligned}
$$ (1 pt)

According to the table, the solution is when $x=\underline{0}$ therefore x must equal: \qquad (1 pt)
2. Solve using a graph:

$$
\begin{aligned}
& Y_{1}=2 x+4 \\
& Y_{2}=-2 x-4(1 \mathrm{pt})
\end{aligned}
$$

According to intersection of the graphs, $x=\underline{-2}$, therefore c must equal (1 pt)
(7 pts.)
Fill in the table:

\mathbf{X}	$\mathbf{Y}_{\mathbf{1}}$	$\mathbf{Y}_{\mathbf{2}}$
-2	-14	0
-1	-9	-2
0	-4	-4
1	1	-6
$\mathbf{2}$	6	-8

(2 pts)

Check using substitution:
$5(0)-4=-2(0)-4$
$0-4=0-4$
$-4=-4 \quad$ true
(2 pts)

Solution:

$$
x=\underline{0}(1 \mathrm{pt})
$$

(7 pts.)
Sketch the graphs here:

(2 pts)

Check using substitution:

$$
\begin{aligned}
& 2(-2)+4=-2(-2)-4 \\
&-4+4=4-4 \\
& 0=0 \quad \text { true } \\
&(2 \text { pts })
\end{aligned}
$$

Solution:

$$
\begin{equation*}
c=-2 \tag{1pt}
\end{equation*}
$$

umulative Review Practice \qquad / 20 correct

1. Solve: $\quad 2 r+7=8 r+19$
(5 pts) Check using substitution:

$$
2(\quad)+7=8(\quad)+19
$$

$$
\ldots=r
$$

2. Solve using the table:

$$
2 p-7=3 p+1
$$

\qquad

$$
Y_{2}=
$$

According to the table, the solution is when $x=$ \qquad

\mathbf{X}	$\mathbf{Y}_{\mathbf{1}}$	$\mathbf{Y}_{\mathbf{2}}$
-11		
-10		
-9		
-8		
-7		

Check using substitution:
$2(\quad)-7=3(\quad)+1$

Solution:
$p=$ \qquad therefore p must equal: \qquad
3. Solve using a graph:

$$
\begin{aligned}
& 2 q+4=-3 q-1 \\
& Y_{1}= \\
& Y_{2}=
\end{aligned}
$$

According to intersection of the graphs, $x=$ \qquad therefore q must equal: \qquad
(8 pts.)

Check using substitution:
$2(\quad)+4=-3(\quad)-1$

Solution:
$q=$ \qquad
\qquad / 20 correct

1. Solve:

$$
\begin{aligned}
& \frac{2 r+7}{}=8 r+19 \\
& \frac{-2 r}{7}=\frac{-2 r}{6 r+19} \\
& \frac{-19}{-\frac{12}{6}}=\frac{6 r}{6} \\
&-2=1 r \\
&-2=r \quad(4 \text { pts })
\end{aligned}
$$

(5 pts) Check using substitution:

$$
\begin{align*}
2(-2)+7 & =8(-2)+19 \\
-4+7 & =-16+19 \\
3 & =3 \text { true } \tag{1pt}
\end{align*}
$$

Check using substitution:
$2(-8)-7=3(-8)+1$ $-16-7=-24+1$ $-23=-23$ true (1 pt)

Solution:

$$
\begin{equation*}
p=-8 \tag{1pt}
\end{equation*}
$$

\qquad
(7 pts.)

$$
\begin{align*}
& 2 p-7=3 p+1 \\
& Y_{1}=\frac{2 x-7}{3 x+1} \\
& Y_{2}=\frac{3}{} \tag{1pt}
\end{align*}
$$

\mathbf{X}	$\mathbf{Y}_{\mathbf{1}}$	$\mathbf{Y}_{\mathbf{2}}$
-11	-29	-32
-10	-27	-29
-9	-25	-26
-8	-23	-23
-7	-21	-20
$(2$ pts $)$		

3. Solve using a graph:

$$
\begin{aligned}
& 2 q+4=-3 q-1 \\
& Y_{1}=\frac{2 x+4}{Y_{2}=-3 x-1}
\end{aligned}
$$

According to intersection of the graphs, $x=\underline{-1}$, (2 pts) (8 pts.)

(2 pts)

Check using substitution:
$2(-1)+4=-3(-1)-1$
$-2+4=3-1$
2 = 2 true
(1 pt)

Solution:

$$
\begin{equation*}
q=\underline{-1} \tag{1pt}
\end{equation*}
$$

therefore q must equal: \qquad -1 (2 pts)

Demonstration Practice

1. Solve using Algebra:
$2 x+3=9$
$x=$ \qquad
Check using subsitution: 2()$+3=9$

Use Graphs:

Use Tables:

\mathbf{X}	$\mathbf{Y}_{\mathbf{1}}$	$\mathbf{Y}_{\mathbf{2}}$
-1		
0		
1		
2		
3		

Intersection \qquad

Which of the 3 methods is the most direct for solving problems like this? (Which method required the fewest number of steps?)
2. Solve using Algebra:
$4 b-21=b+9$
$b=$ \qquad
Check using subsitution:

$$
4(\quad)-21=(\quad)+9
$$

Intersection

Use Graphs:

Use Tables:

\mathbf{X}	\mathbf{Y}_{1}	$\mathbf{Y}_{\mathbf{2}}$

3. Solve using Algebra:
$-1 m-2=3 m+10$

$$
\ldots=m
$$

Use Graphs:

Use Tables:

Check using subsitution:

$$
-1(\quad)-2=3(\quad)+10
$$

Intersection \qquad

Which of the 3 methods is the most direct
for solving problems like this equation?

Demonstration Practice Key

1. Solve using Algebra:

$2 x+3$	$=9$
$\frac{-3}{2 x}$	$=\frac{-3}{6}$
$\frac{2}{2}$	
$1 x$	$=3$
x	$=3$

Check using subsitution:

$$
\begin{array}{r}
2(3)+3=9 \\
6+3=9 \\
9=9
\end{array}
$$

true

Use Graphs:

Use Tables:

\mathbf{X}	$\mathbf{Y}_{\mathbf{1}}$	$\mathbf{Y}_{\mathbf{2}}$
$-\mathbf{1}$	1	9
0	3	9
$\mathbf{1}$	5	9
$\mathbf{2}$	7	9
$\mathbf{3}$	9	9

Intersection (3, 9)
Which of the 3 methods is the most direct for solving problems like this?
(Which method required the fewest number of steps?) \qquad
2. Solve using Algebra:

$$
\begin{aligned}
& 4 b-21=\frac{Y 2}{4-9} \\
& \frac{-b}{3 b-21}=\frac{-2}{9} \\
& \frac{+21}{3 b}=\frac{+21}{3} \\
& \frac{30}{3} \\
& 1 b \quad=10 \\
& b=10
\end{aligned}
$$

Use Tables:

\mathbf{X}	$\mathbf{Y}_{\mathbf{1}}$	$\mathbf{Y}_{\mathbf{2}}$
6	3	15
7	7	16
8	11	17
9	15	18
10	19	19

Check using subsitution:

$$
\begin{aligned}
4(10)-21 & =(10)+9 \\
40-21 & =10+9 \\
19 & =19 \quad \text { true }
\end{aligned}
$$

Intersection greater than $x=5$

Which of the 3 methods is the most direct for solving problems like this equation? answers will vary, algebraic or tables are most likely

Demonstration Practice Key (cont.)

3. Solve using Algebra:

$-1 m^{Y 1}-2$	$=3 m^{Y}+10$
$+1 m$	$+1 m$
-2	$=4 m+10$
$\frac{-10}{\frac{-12}{4}}$	$=\frac{4 m}{4} \quad \underline{10}$
-3	$=1 m$
-3	$=m$

Use Graphs:

Y2

Use Tables:

\mathbf{X}	$\mathbf{Y}_{\mathbf{1}}$	$\mathbf{Y}_{\mathbf{2}}$
-6	4	-8
-5	3	-5
-4	2	-2
-3	1	1
-2	0	4

Check using subsitution:

$$
\begin{aligned}
-1(-3)-2 & =3(-3)+10 \\
3-2 & =-9+10 \\
1 & =1 \quad \text { true }
\end{aligned}
$$

Which of the 3 methods is the most direct
for solving problems like this equation? answers will vary

Guided Practice

For each of the following, list your preferred method and justify your reasoning.

1. $6 r=2 r+16$

Method: \qquad
Reason: \qquad
2. $6 r=18$

Method: \qquad
Reason: \qquad
3. $-6 r-8=2 r+16$

Method: \qquad
Reason: \qquad
4. $4=2 r+8$

Method: \qquad
Reason: \qquad

P ractice (cont.)

Pair Practice

Solve each of the following using the method you selected on the previous page.

1. $6 r=2 r+16$
$r=$ \qquad

\mathbf{X}	$\mathbf{Y}_{\mathbf{1}}$	$\mathbf{Y}_{\mathbf{2}}$

2. $6 r=18$

Check:
$6(\quad)=2(\quad)+16$

Check:
6 () = 18
3. $-6 r-8=2 r+16 \quad r=$ \qquad Check:
$-6(\quad)-8=2(\quad)+16$

4. $4=2 r+8$
$r=$ \qquad Check:
$4=2(\quad)+8$

Guided Practice

For each of the following, list your preferred method and justify your reasoning.

1. $6 r=2 r+16$

Method:__algebraic, table
Reason: $\quad 2$ steps to solve algebraically, 3 steps to solve with table
2. $6 r=18$

Method: algebraic
Reason:_1 1 step to solve
3. $-6 r-8=2 r+16$

Method: graph

Reason:__intersection point is shown in graph.
4. $4=2 r+8$

Method:__algebraic
Reason: 2 steps to solve.

Practice Key (cont.)

Pair Practice

Solve each of the following using the method you selected on the previous page.

1. $6 r=2 r+16$
$r=\underline{4}$

\mathbf{X}	$\mathbf{Y}_{\mathbf{1}}$	$\mathbf{Y}_{\mathbf{2}}$
1	6	18
2	12	20
3	18	22
4	24	24
5	30	26

2. $\frac{6 r}{6}=\frac{18}{6}$
$1 r=3$
$r=3$
3. $-6 r^{Y 1}-8=2 r+16$

$$
r=-3
$$

Y1
4. $4=2 r+8$
$r=\underline{-2}$

$$
\begin{aligned}
\frac{-8}{\frac{-4}{2}} & =\frac{-8}{\frac{2 r}{2}} \\
-2 & =1 r \\
-2 & =r
\end{aligned}
$$

Check:
$6(4)=2(4)+16$ $24=8+16$ $24=24 \quad$ true

Check:
$6(3)=18$
$18=18 \quad$ true

Check:

$$
\begin{aligned}
-6(-3)-8 & =2(-3)+16 \\
18-8 & =-6+16 \\
10 & =10 \quad \text { true }
\end{aligned}
$$

Check:
$4=2(-2)+8$
$4=-4+8$
$4=4 \quad$ true

Name:

I ndependent Practice Score: / 12 correct

Solve each of the following. First select a method and explain your reasoning, then use the method you selected to obtain a solution.

1. $4 x=2 x-4$ (4 pts.) Method:

Reason:
show your work/graph/table here: Check: $4(\quad)=2(\quad)-4$

Solution: $x=$ \qquad
2. $7 x-4=10$ (4 pts.) Method:

Reason:
show your work/graph/table here: Check: 7() - $4=10$

Solution: $x=$ \qquad
3. $3 x-2=x+8$ (4 pts.) Method:

Reason:
show your work/graph/table here: Check: $3(\quad)-2=(\quad)+8$

Solution: $x=$ \qquad

I ndependent Practice Key

Solve each of the following. First select a method and explain your reasoning, then use the method you selected to obtain a solution.

1. $4 x=2 x-4$
(4 pts.) Method:
answers will vary.

Reason: answers will vary.
Show your work/graph/table here: Check: $4(-2)=2(-2)-4$

$$
\begin{aligned}
& -8=-4-4 \\
& -8=-8 \quad \text { true }
\end{aligned}
$$

Solution: $x=\underline{-2}$
2. $7 x-4=10$
(4 pts.) Method:
answers will vary.

Reason:__answers will vary.
Show your work/graph/table here: Check: 7(2)-4=10 $14-4=10$
$10=10$ true

Solution: $x=\underline{2}$
3. $3 x-2=x+8$ (4 pts.) Method:_answers will vary.

Reason: answers will vary.
Show your work/graph/table here: Check: $3(5)-2=(5)+8$

$$
\begin{aligned}
15-2 & =5+8 \\
13 & =13 \quad \text { true }
\end{aligned}
$$

Scoring Key:
1 pt for method \& reason
2 pts for work
1 pt for solution
Solution: $x=\underline{5}$

