Write the fraction for the shaded part.

1.) _________

2.) _________

3.) _________

4.) _________
Read the problem and answer the questions below.

1.) Lin divided her piece of paper into 10 equal parts. She used \(\frac{9}{10} \) of the paper for a project. Shade the model to represent the amount of paper Lin used.

What is the denominator, the number of parts that make the whole? ___

What is the numerator, the number of parts Lin used? ___

How many tenths are shaded? ___

What fraction of the paper did Lin not use? ___
2.) Alex ate \(\frac{2}{10}\) of the lasagna. Shade the model to represent the amount of lasagna Alex ate.

![Shaded Model]

What is the denominator, the number of parts that make the whole?

What is the numerator, the number of parts Alex ate? ______

How many tenths are shaded? ______

What fraction of the lasagna was left after Alex ate? ______
Write the fraction for the amount shaded of the whole.

3.) _________

4.) _________

Shade the fraction.

5.) one-tenth
Tenths Tic Tac Toe

Directions:
1. Decide which player will play first. The other player will play second.
2. Decide who will be “X” and who will be “O.”
3. Take turns selecting a problem in the box. Write the fraction or shade in the box.
4. If the player’s answer is correct, then mark the box with either an “X” or an “O.”
5. Continue to take turns.
6. Play the game until one player has 3 boxes filled in any column, row, or diagonal.

| \begin{array}{c}
\frac{4}{10} \\
\hline
\text{one-tenth} \\
\hline
\frac{7}{10}
\end{array} | \begin{array}{c}
\text{one-tenth} \\
\hline
\frac{5}{10}
\end{array} | \begin{array}{c}
\hline
\end{array} |
<table>
<thead>
<tr>
<th>Fraction</th>
<th>Description</th>
<th>Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{10}{10})</td>
<td>seven-tenths</td>
<td></td>
</tr>
<tr>
<td>four-tenths</td>
<td>eight-tenths</td>
<td></td>
</tr>
<tr>
<td>(\frac{2}{10})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Write the fraction for the amount shaded of the whole.

1.) ________

Shade the fraction.

3.) $\frac{5}{10}$
4.) Choose the model that shows $\frac{7}{10}$.

A

B

C

D
Write the fraction.

1.) _________

2.) _________

3.) _________
Shade the fraction.

4.) \(\frac{4}{10} \)

5.) \(\frac{1}{10} \)
1.) Katey and Rose shared a loaf of bread. Katey ate \(\frac{2}{10} \) and Rose ate \(\frac{4}{10} \) of the loaf of bread. How much bread did they eat?

Equation: \[\frac{2}{10} + \frac{4}{10} = \]
2.) There is $\frac{8}{10}$ of a birthday cake. Kwantay ate $\frac{2}{10}$ of the cake. How much cake is left?

Equation: __________________________
Shade the models and solve.

1.) \(\frac{1}{10} + \frac{7}{10} = \) _____

2.) \(\frac{8}{10} - \frac{4}{10} = \) _____
Write an equation and solve.

3.) There is $\frac{9}{10}$ of a brownie left in the pan. David ate $\frac{5}{10}$. How much of a brownie is left after David ate $\frac{5}{10}$?

4.) Write an addition equation for the picture below.

5.) Write a subtraction equation for the picture below.
Write the fraction for the shaded amount of the whole.

1.) __________

Shade the whole to represent the fraction.

2.) \(\frac{6}{10} \)

Choose the correct answer.

3.) Which fraction does the model represent.

A \(\frac{7}{10} \)
B \(\frac{9}{10} \)
C \(\frac{1}{10} \)
D \(\frac{8}{10} \)
Shade the models and then solve.

4.) \(\frac{2}{10} + \frac{4}{10} = \)

\[\begin{array}{ccc} \hline & | & | & | & | & | & | & | & | & | & | \hline \end{array} \] \[\begin{array}{ccc} \hline & | & | & | & | & | & | & | & | & | \hline \end{array} \] \[\begin{array}{ccc} \hline & | & | & | & | & | & | & | & | & \hline \end{array} \]

5.) \(\frac{6}{10} - \frac{3}{10} = \)

\[\begin{array}{ccc} \hline & | & | & | & | & | & | & | & | & | \hline \end{array} \]

Write an equation and solve.

6.) Julie ran \(\frac{7}{10} \) of a mile. Dan ran \(\frac{2}{10} \) of a mile less than Julie. How far did Dan run?
Shade the model to represent the fraction.

1.) \(\frac{24}{100} \)

2.) \(\frac{6}{100} \)

3.) \(\frac{19}{100} \)
4.) It rained \(\frac{59}{100} \) of a meter yesterday. Shade the model to represent how much it rained.

Write the fraction for the shaded model.

5.) __________

6.) __________
Hundredths Tic Tac Toe

Directions:

1. Decide which player will play first. The other player will play second.
2. Decide who will be “X” and who will be “O.”
3. Take turns selecting a problem in the box. Write the fraction or shade in the box.
4. If the player’s answer is correct, then mark the box with either an “X” or an “O.”
5. Continue to take turns.
6. Play the game until one player has 3 boxes in any column, row, or diagonal.

<table>
<thead>
<tr>
<th>(\frac{3}{100})</th>
<th>twenty five-hundredths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>eleven-hundredths</th>
<th>seventy-hundredths</th>
<th>(\frac{38}{100})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\frac{26}{100})</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Write the fraction for the shaded amount of the whole.

1.) __________

2.) Choose the model that has $\frac{6}{10}$ shaded.

A

B

C

D
Use the model to solve.

3.) \(\frac{3}{10} + \frac{5}{10} = \underline{\hspace{1cm}} \)

4.) \(\frac{4}{10} - \frac{1}{10} = \underline{\hspace{1cm}} \)
Shade the model to represent the fraction.

5.) \(\frac{31}{100} \)

Write the fraction for the shaded model.

5.) ___________
8.) Choose the model that has $\frac{82}{100}$ shaded.
1.) It snowed $\frac{13}{100}$ of a meter on Monday and $\frac{16}{100}$ of a meter on Tuesday. It did not snow at all on Wednesday. How much snow fell in all 3 days?

Equation: __________________________
2.) Ana measured \(\frac{40}{100} \) of a meter of rain in the rain gauge. \(\frac{20}{100} \) of a meter later evaporated. How much rain is left in the rain gauge?

Equation: _____________________________
Shade the models and solve.

1.) \(\frac{23}{100} + \frac{44}{100} = \) _______

[Diagrams of models shaded to represent the addition of fractions]

2.) \(\frac{80}{100} - \frac{20}{100} = \) _______

[Diagram of model shaded to represent the subtraction of fractions]
3.) It snowed three hundredths of a meter on Friday and four hundredths of a meter on Saturday. How much snow fell both days? Write an equation and solve.

Write the fraction.

4.) sixty-six hundredths __________

5.) nine hundredths __________

6.) ninety six hundredths __________
1.) Choose the best answer. Which fraction represents the shaded model?

![Shaded Model Diagram]

A \(\frac{25}{100} \)
B \(\frac{35}{100} \)
C \(\frac{36}{100} \)
D \(\frac{65}{100} \)

Shade the model and solve

2.) \(\frac{8}{10} - \frac{3}{10} = \) _____
Write the fraction.

3.)

Shade the models and solve.

4.) \(\frac{32}{100} + \frac{18}{100} = \) ________

5.) \(\frac{56}{100} - \frac{14}{100} = \) ________
Write the fraction.

6.) eight hundredths __________

7.) forty-three hundredths __________

8.) Shade the models and solve.

\[
\frac{67}{100} + \frac{22}{100} = \frac{89}{100}
\]

\[
\begin{array}{c}
\text{A} \quad \frac{99}{100} \\
\text{B} \quad \frac{91}{100} \\
\text{C} \quad \frac{89}{100} \\
\text{D} \quad \frac{98}{100}
\end{array}
\]
Use the fraction bar to help find the equivalent fraction.

1.) \(\frac{4}{5} = \frac{8}{10} \)

2.) \(\frac{2}{3} = \frac{8}{12} \)

3.) \(\frac{1}{3} = \frac{2}{6} \)

4.) \(\frac{1}{2} = \frac{4}{8} \)
Shade the model and use multiplication to find the equivalent fraction.

1.)

\[
\frac{4}{10} = \frac{1}{100}
\]

2.)

\[
\frac{8}{10} = \frac{1}{100}
\]
3.) \[
\frac{3}{10} = \frac{\square}{100}
\]

4.) Marcus measured the width of his fingernail to be \(\frac{2}{10}\) of a centimeter. Shade the models and use multiplication to find the equivalent fraction in hundredths.

\[
\frac{2}{10} = \frac{\square}{100}
\]

The width of Marcus’ fingernail in hundredths is _____________.
Use the models below to solve.

1.) \(\frac{25}{100} - \frac{15}{100} = \) ________

Write the fraction.

2.) three-tenths ________

3.) nine-hundredths ________

4.) fifty-six hundredths ________

Shade the model and use multiplication to find the equivalent fraction.

5.) \(\frac{6}{10} = \frac{100}{\square} \)
Shade the model and use multiplication to find the equivalent fraction.

6.)

\[
\frac{2}{10} = \frac{\text{shade box}}{100}
\]

7.)

\[
\frac{9}{10} = \frac{\text{shade box}}{100}
\]
Choose the best answer.

8.) Which model represents the number of hundredths that are equivalent to \(\frac{5}{10} \)?

A

B

C

D
Compare using greater than $>$, less than $<$, or equal $=$

1.) \[
\frac{20}{100} \bigg\circ \frac{90}{100}
\]

2.) \[
\frac{56}{100} \bigg\circ \frac{54}{100}
\]

3.) \[
\frac{9}{100} \bigg\circ \frac{35}{100}
\]

4.) \[
\frac{81}{100} \bigg\circ \frac{18}{100}
\]
Shade the model and use multiplication to find the equivalent fraction.

\[
\frac{68}{100} = \frac{7}{10}
\]
Shade the models to represent the two fractions. Find a fraction with a common denominator, and then write < or >.

1.) \(\frac{6}{10} \bigcirc \frac{56}{100} \)

\[
\begin{align*}
\frac{6}{10} &= \frac{60}{100} \\
\frac{56}{100} &= \frac{56}{100}
\end{align*}
\]

2.) \(\frac{48}{100} \bigcirc \frac{5}{10} \)

\[
\begin{align*}
\frac{48}{100} &= \frac{48}{100} \\
\frac{5}{10} &= \frac{50}{100}
\end{align*}
\]
3.) \[\frac{4}{10} \bigcirc \frac{47}{100}\]

Use the model to solve the problem.

4.) Martin walks \(\frac{76}{100}\) of a mile to school. Christina walks \(\frac{8}{10}\) of a mile to school. Who walks further to school?

\[\frac{76}{100} \quad \frac{8}{10} = \frac{100}{100}\]

\[\frac{76}{100} \quad \frac{8}{10} = \frac{100}{100}\]

_______________ walks further to school.
Shade the model and use multiplication to find the equivalent fraction.

1.) Shade the model and use multiplication to find the equivalent fraction.

\[
\frac{4}{10} = \frac{\square}{100}
\]

2.) Choose the model that represents the number of hundredths that are equivalent to \(\frac{7}{10}\).

A

B

C

D
Shade the models to represent the two fractions. Find a fraction with a common denominator, and then write < or >.

3.) \(\frac{4}{10} \) \(\bigcirc \) \(\frac{37}{100} \)

\[
\frac{4}{10} = \frac{40}{100} \\
\frac{37}{100}
\]

Use the models to solve the problem.

4.) \(\frac{77}{100} \) \(\bigcirc \) \(\frac{7}{10} \)

\[
\frac{77}{100} \\
\frac{7}{10} = \frac{70}{100}
\]
5.) \(\frac{9}{10} \bigcirc \frac{93}{100} \)

![Diagram with shaded grids representing \(\frac{9}{10} \) and \(\frac{93}{100} \).]

\[
\frac{9}{10} = \frac{90}{100} \quad \text{and} \quad \frac{93}{100}
\]

6.) Choose the letter that shows the fractions compared correctly.

A \(\frac{4}{10} < \frac{38}{100} \)

B \(\frac{8}{10} > \frac{81}{100} \)

C \(\frac{5}{10} < \frac{54}{100} \)

D \(\frac{33}{100} < \frac{3}{10} \)
Ernesto has some pictures printed on shaded paper. What part of his pictures are printed on shaded paper?
Write the fraction and decimal for the shaded area.

1.)

2.)
Shade and write the decimal.

3.)

<table>
<thead>
<tr>
<th>ones</th>
<th>tenths</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\frac{2}{10})</td>
</tr>
</tbody>
</table>

4.)

<table>
<thead>
<tr>
<th>ones</th>
<th>tenths</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{8}{10})</td>
<td></td>
</tr>
</tbody>
</table>
Write and read the fraction and decimal for the shaded model.

5.)

fraction ____________ decimal ____________

6.)

fraction ____________ decimal ____________
Write and read the fraction and decimal for the shaded model.

7.)

fraction ___________ decimal ___________

8.)

fraction ___________ decimal ___________

9.)

fraction ___________ decimal ___________
Shade the model and use multiplication to find the equivalent fraction.

1.)

\[
\frac{5}{10} = \frac{\square}{100}
\]

2.) Choose the model that represents the number of hundredths that are equivalent to \(\frac{4}{10}\).
3.) Choose the letter that shows the fractions compared correctly.

A \(\frac{9}{10} < \frac{86}{100} \)

B \(\frac{2}{10} > \frac{23}{100} \)

C \(\frac{5}{10} < \frac{45}{100} \)

D \(\frac{77}{100} < \frac{8}{10} \)

4.) Write the fraction and decimal for the shaded area.

\[
\begin{array}{c|c}
\text{ones} & \text{tenths} \\
\hline
\hline
1 & 0.6 \\
\hline
\end{array}
\]
5.) Choose the letter of the model with 0.6 shaded.

A

B

C

D

6.) Which fraction represents the decimal number 0.9?

A \(\frac{9}{10} \)

B \(\frac{9}{10} \)

C \(\frac{90}{100} \)

D \(\frac{7}{100} \)
ones tenths hundredths

ones tenths hundredths
Write the fraction and decimal for the shaded area.

1.)

<table>
<thead>
<tr>
<th>ones</th>
<th>tenths</th>
<th>hundredths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.)

<table>
<thead>
<tr>
<th>ones</th>
<th>tenths</th>
<th>hundredths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Shade the model and write the decimal.

3.)

\[\begin{array}{c|c|c}
\text{ones} & \text{tenths} & \text{hundredths} \\
\hline
1 & 52 & \\
\hline
\end{array} \]

\[\frac{1}{100} \]
Write and read the fraction and decimal for the shaded model.

1.)

fraction ____________

decimal ____________

2.)

fraction ____________

decimal ____________
3.)

fraction ____________
decimal ____________

4.)

fraction ____________
decimal ____________
1.) Choose the letter that shows the fractions compared correctly.

- **A** \(\frac{5}{10} < \frac{53}{100} \)
- **C** \(\frac{6}{10} > \frac{67}{100} \)
- **B** \(\frac{2}{10} > \frac{40}{100} \)
- **D** \(\frac{8}{100} = \frac{8}{10} \)

2.) Write the fraction and decimal for the shaded area.

- fraction ____________
- decimal ____________
3.) Choose the best answer. Which model represents 0.4?

A
\[
\begin{array}{c}
\boxed{\text{Model A}} \\
\end{array}
\]

B
\[
\begin{array}{c}
\boxed{\text{Model B}} \\
\end{array}
\]

C
\[
\begin{array}{c}
\boxed{\text{Model C}} \\
\end{array}
\]

D
\[
\begin{array}{c}
\boxed{\text{Model D}} \\
\end{array}
\]

4.) Which fraction represents the decimal number 0.2?

A \[\frac{2}{10} \]

B \[\frac{20}{100} \]

C \[\frac{2}{100} \]

D \[2 \]
5.) Write the fraction and decimal for the shaded area.

6.) Shade and write the decimal.
7.) Micah was recording information in science class. His lab partner stated it rained one and thirty-six hundredths of a centimeter. Which of the following decimal numbers should Micah write on his paper?

A 1.26
B 0.36
C 1.06
D 1.36
Read the following decimals:

1.2 6.8 3.47 4.09

Write the number in the place value chart and in expanded notation.

378

<table>
<thead>
<tr>
<th>Thousands</th>
<th>Hundreds</th>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\underline{3} + \underline{7} + \underline{8}\]

5,107

<table>
<thead>
<tr>
<th>Thousands</th>
<th>Hundreds</th>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\underline{5} + \underline{1} + \underline{0} + \underline{7}\]
8.36

<table>
<thead>
<tr>
<th>ones</th>
<th>tenths</th>
<th>hundredths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.</td>
<td></td>
</tr>
</tbody>
</table>

_______ + _______ + _______
Write the number in the place value chart and then in expanded notation.

1.) 3.7

<table>
<thead>
<tr>
<th>ones</th>
<th>tenths</th>
<th>hundredths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.) 4.62

<table>
<thead>
<tr>
<th>ones</th>
<th>tenths</th>
<th>hundredths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.) 9.08

<table>
<thead>
<tr>
<th>ones</th>
<th>tenths</th>
<th>hundredths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Write the fraction and decimal for the amount shown.

1.)

\[\begin{array}{c|c|c}
\text{ones} & \text{tenths} \\
\hline
\end{array} \]

2.)

\[\begin{array}{c|c|c|c}
\text{ones} & \text{tenths} & \text{hundredths} \\
\hline
\end{array} \]
Write the number in the place value chart and then in expanded notation.

3.) 8.5

<table>
<thead>
<tr>
<th>ones</th>
<th>tenths</th>
<th>hundredths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.) 2.93

<table>
<thead>
<tr>
<th>ones</th>
<th>tenths</th>
<th>hundredths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.) 7.01

<table>
<thead>
<tr>
<th>ones</th>
<th>tenths</th>
<th>hundredths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6.) Choose the letter that shows the expanded notation for 6.38.

A 6.0 + 0.8 + 0.03
B 600 + 30 + 8.0
C 6.0 + 0.3 + 0.08
D 6.0 + 3.0 + 8.0
Modeled Practice #1

1.0
7/10
0.7
5/10
0.5
0

fraction

decimal
fraction

\[
\begin{array}{cccccccc}
0 & 0.5 & 1 & 1.2 & 1.4 & 1.6 & 1.8 & 2.0 \\
\hline
\frac{5}{10} & \frac{12}{10} & \frac{14}{10} & \frac{16}{10} & \frac{18}{10} & \frac{10}{10} \\
\end{array}
\]

decimal

The diagram illustrates a number line with fractions and decimals marked. The fractions include \(\frac{5}{10}\), \(\frac{12}{10}\), \(\frac{14}{10}\), \(\frac{16}{10}\), and \(\frac{18}{10}\), while the decimals include 0, 0.5, 1, 1.2, 1.4, 1.6, 1.8, and 2.0. The fraction \(\frac{16}{10}\) is marked with a dot (D).
Identify each point on the number line.

1.) What fraction represents point K? ________
2.) What fraction represents point M? ________
3.) What fraction represents point N? ________

4.) What decimal represents point C? ________
5.) What decimal represents point A? ________
6.) What decimal represents point B? ________
Activity 2
Identify each point on the number line.

1.) What fraction represents point L? __________
2.) Point C? __________
3.) Point T? __________

4.) What decimal represents point M? __________
5.) Point Q? __________
6.) Point X? __________
Write the fraction and decimal for the amount shown.

1.)

2.)
Write the number in the place value chart and then in expanded notation.

3.) 6.2

<table>
<thead>
<tr>
<th>ones</th>
<th>tenths</th>
<th>hundredths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.) Choose the letter that shows the number expression for 5.15.
 - A 5.0 + 0.1
 - B 500 + 15
 - C 5.0 + 0.5 + 0.1
 - D 5.0 + 0.1 + 0.05

5.) What fraction represents point C?

6.) What decimal represents point L?
Write the fraction and decimal for the shaded models.

fraction ___________

decimal ___________

fraction ___________

decimal ___________

Use a point to represent the fractions and decimals above on the number line.
fraction

H

5

6

7}

decimal

5

6
1.) Write the missing fraction on the number line.

2.) Write the missing decimal on the number line.
Write the number in the place value chart and then in expanded form.

1.) 9.24

<table>
<thead>
<tr>
<th>ones</th>
<th>tenths</th>
<th>hundredths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.) Choose the letter that shows the expanded form for 5.57.
 - A 7.0 + 0.7
 - B 7.0 + 0.07
 - C 5.0 + 0.5 + 0.07
 - D 7.0 + 0.75

3.) What fraction represents point J?

4.) What decimal represents point L?
5.) Write the decimal for point K. ____________

6.) Jayden is finding points on a number line. What decimal best represents point F?

A 10
B 8.9
C 9.7
D 9.9
Write the decimal for each blank box on the number line.
Activity 1
Write the decimal for the shaded models.

1.)

\[
\begin{array}{c}
\text{= } \\
\end{array}
\]

2.) Shade 0.3 and 0.30.

\[
\begin{array}{c}
\text{= } \\
\end{array}
\]

3.) Write 2 equivalent decimals and then shade the matching amounts.

\[
\begin{array}{c}
\text{= } \\
\end{array}
\]
Activity 2
Write the decimal for the shaded models.

1.)

2.) Shade 0.2 and 0.20.

3.) Write 2 equivalent decimals and then shade the matching amounts.
1.) Choose the letter that shows the expanded form for 7.57.

A 7.0 + 0.7
B 7.0 + 0.07
C 7.0 + 0.5 + 0.07
D 7.0 + 0.75

2.) What decimal represents point J? ____________

3.) What decimal represents point L? ____________

4.) Nora is finding points on a number line. What decimal best represents point S?

A 3.3
B 3.2
C 2.2
D 3.4
Write the equivalent decimals for the shaded models.

5.)

\[
\begin{array}{c}
\text{Shaded Model 1} \\
\text{Shaded Model 2}
\end{array}
\]

\[=\]

6.) Shade 0.8 and 0.80.

\[
\begin{array}{c}
\text{Shaded Model 1} \\
\text{Shaded Model 2}
\end{array}
\]

\[=\]
7.) Which statement is true about the shaded models below?

A 0.50 > 0.5
B 0.05 > 0.5
C 0.5 = 0.05
D 0.50 = 0.5
greater than

\[
\frac{1}{10} \quad \bigcirc \quad \frac{2}{10}
\]

less than
Module FDR
Lesson 13
Modeled Practice #2

0.50

0.45

Module FDR
Lesson 13
Modeled Practice #3

0.5 0.58
Activity 1
Shade and compare using >, <, or =.

1.)

0.4 0.26

2.)

0.4 0.60
Shade and compare using >, <, or =.

3.)

\[
\begin{array}{c}
0.77 \\
\end{array}
\quad \quad \quad
\begin{array}{c}
0.67 \\
\end{array}
\]

4.)

\[
\begin{array}{c}
0.4 \\
\end{array}
\quad \quad \quad
\begin{array}{c}
0.6 \\
\end{array}
\]
Activity 2
Write the decimal for the shaded models. Then, compare using >, <, or =.

1.)

2.)
Write the decimal for the shaded models. Then, compare using >, <, or =.

3.)

4.)
Write the equivalent decimals for the shaded models.

1.)

<table>
<thead>
<tr>
<th>Shaded Model 1</th>
<th>Shaded Model 2</th>
</tr>
</thead>
</table>
| ![
| ![

=

2.) Shade 0.4 and write the equivalent decimal.

<table>
<thead>
<tr>
<th>Shaded Model 1</th>
<th>Shaded Model 2</th>
</tr>
</thead>
</table>
| ![
| ![

=

3.) Write 2 equivalent decimals and shade.

\[
\begin{array}{c}
\text{} \\
\text{} \\
\end{array}
\quad =
\begin{array}{c}
\text{} \\
\text{} \\
\end{array}
\]

Shade and compare using $>$, $<$, or \leq.

4.)

\[
\begin{array}{c}
\text{} \\
\text{} \\
\end{array}
\quad \bigcirc
\begin{array}{c}
\text{} \\
\text{} \\
\end{array}
\]

0.7 \quad \bigcirc \quad 0.87
Shade and compare using >, <, or =.

5.)

6.)
Which of the following makes the statement true?

A >
B <
C =
0.7 \[\bigcirc\] 0.69
0.46 ☐ 0.4
0.03 \[\bigcirc\] 0.3
Write the decimal for the shaded models. Then, compare using >, <, or =.

1.)

2.)
Write the decimal for the shaded models. Then, compare using $>$, $<$, or $=$.

3.)

___ $>$ ___
Comparing Decimals Tic Tac Toe

Directions:

1. Decide which player will play first. The other player will play second.
2. Decide who will be “X” and who will be “O.”
3. Take turns selecting a problem in the box.
4. Compare the decimals using >, <, or =.
5. Use the Fractions and Decimals Mat and dry erase marker to solve the problem.
6. If a player’s answer is correct, then mark the box with either an “X” or an “O.”
7. Continue to take turns.
8. Play the game until one player has 3 boxes in any column, row, or diagonal.

<table>
<thead>
<tr>
<th>0.7</th>
<th>0.67</th>
<th>0.29</th>
<th>0.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.88</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>0.90</td>
<td>0.56</td>
<td>0.6</td>
</tr>
<tr>
<td>0.3</td>
<td>0.33</td>
<td>0.7</td>
<td>0.77</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.1</td>
<td>0.10</td>
</tr>
</tbody>
</table>
1.) Shade the models.

![Models](image)

Which of the following makes the statement true?

A $>$
B $<$
C $=$

Shade and compare using $>$, $<$, or $=$.

2.)

![Models](image)

0.76 0.82
Shade and compare using >, <, or =.

3.)

```
| | | | | | | | | | |
```

0.7 〇 0.87

4.)

```
| | | | | | | | | | |
```

0.46 〇 0.5
Write the decimal for the shaded models. Then, compare using >, <, or =.

5.)

6.)

7.) Which decimal makes the statement true?

\[0.26 < \text{______}\]

A 0.04
B 0.20
C 0.4
D 0.25
$0.94 \bigcirc \frac{10}{10} = \square$
Shade and compare using >, <, or =.

1.)

\[
\begin{array}{cc}
\text{0.74} & \text{6} \\
\text{\bigcirc} & \text{10}
\end{array}
\]

2.)

\[
\begin{array}{cc}
\text{0.62} & \text{8} \\
\\bigcirc & \text{10}
\end{array}
\]
Shade and compare using $>$, $<$, or $=$.

3.)

\[
\begin{array}{c}
0.58 \bigcirc \frac{10}{10} = \square
\end{array}
\]
Shade and compare using >, <, or =.

1.)

0.47 \(\bigcirc \) 0.55

2.)

0.70 \(\bigcirc \) 0.7
Write the decimal for the shaded models. Then, compare using >, <, or =.

3.)

4.)
Shade and compare using >, <, or =.

5.)

\[
\begin{array}{c|c|c}
& & \\
\hline
\text{Shade} & \text{Shade} & \\
\hline
0.33 & \bigcirc & \frac{3}{10}
\end{array}
\]

6.)

\[
\begin{array}{c|c|c}
& & \\
\hline
\text{Shade} & \text{Shade} & \\
\hline
0.18 & \bigcirc & \frac{8}{10}
\end{array}
\]
7.)

Which of the following statements is true?

A $1 < 0.66$
B $0.66 > 1$
C $1 = 0.66$
D $1 > 0.66$
least to greatest

0.17

0.07

0.7

least to greatest

1.0

0.8

0.39
1.) Shade and order the decimal numbers from least to greatest.

0.52

0.32

0.4

2.) Order the decimal numbers for the shaded models from least to greatest.
Write the decimal for the shaded models. Then, compare using $>$, $<$, or $=$.

1.)

Shade and compare using $>$, $<$, or $=$.

2.)
3.) Look at the shaded models.

4.) Look at the shaded models.

Which of the following makes the statement true?

A 0.03 > 0.37
B 0.3 > 0.37
C 0.3 < 0.37
D 0.3 = 0.37
5.) Shade and order the decimal numbers from least to greatest.

0.4

0.04

0.49

6.) Order the decimal numbers for the shaded models from least to greatest.
7.) Look at the shaded models.

Which of the following shows the decimals in order from least to greatest?

A 0.21; 0.3; 0.02
B 0.3; 0.21; 0.02
C 0.02; 0.3; 0.21
D 0.02; 0.21; 0.3
Shade and order the decimals from least to greatest.

0.4

1.0

0.04
greatest to least

0.73
0.8
0.17

greatest to least

0.09
0.7
0.46
1.) Shade and order the decimals from greatest to least.

0.6

0.26

0.62

2.) Order the decimals for the shaded models from greatest to least.
1.) Look at the shaded models.

Which of the following statements is true?

A 1 > 0.95
B 1 < 0.95
C 1 = 0.95
D 1 < 0.09

2.) Shade and order the decimals from least to greatest.

0.3 0.32 0.05
3.) Look at the shaded models.

Which of the following shows the decimals in order from least to greatest?

A 7; 0.8; 0.82
B 0.8; 0.7; 0.82
C 0.82; 0.8; 0.7
D 0.7; 0.8; 0.82

4.) Shade and order the decimals from greatest to least.
5.) Order the decimals for the shaded models from greatest to least.

6.) Look at the shaded models.

Which of the following shows the decimals in order from greatest to least?

A 0.63; 0.6; 0.06
B 0.6; 0.63; 0.06
C 0.06; 0.6; 0.63
D 0.06; 0.63; 0.6
7.) Order the money from greatest to least.

$0.10 $0.01 $0.11
Shade the models and solve.

1.) \(\frac{4}{10} + \frac{4}{10} = \) ______

\[
\begin{array}{c}
\ \ \ \ \ \ \\
\ \ \ \ \ \ \\
\ \ \ \ \ \ \\
\ \ \ \ \ \ \\
\ \ \ \ \ \ \\
\ \ \ \ \ \ \\
\ \ \ \ \ \ \\
\ \ \ \ \ \ \\
\ \ \ \ \ \ \\
\ \ \ \ \ \ \\
\end{array} +
\begin{array}{c}
\ \ \ \ \ \ \\
\ \ \ \ \ \ \\
\ \ \ \ \ \ \\
\ \ \ \ \ \ \\
\ \ \ \ \ \ \\
\ \ \ \ \ \ \\
\ \ \ \ \ \ \\
\ \ \ \ \ \ \\
\ \ \ \ \ \ \\
\ \ \ \ \ \ \\
\end{array} =
\begin{array}{c}
\ \ \ \ \ \ \\
\ \ \ \ \ \ \\
\ \ \ \ \ \ \\
\ \ \ \ \ \ \\
\ \ \ \ \ \ \\
\ \ \ \ \ \ \\
\ \ \ \ \ \ \\
\ \ \ \ \ \ \\
\ \ \ \ \ \ \\
\ \ \ \ \ \ \\
\end{array}
\]

2.) \(\frac{9}{10} - \frac{3}{10} = \) ______

\[
\begin{array}{c}
\ \ \ \ \ \ \\
\ \ \ \ \ \ \\
\ \ \ \ \ \ \\
\ \ \ \ \ \ \\
\ \ \ \ \ \ \\
\ \ \ \ \ \ \\
\ \ \ \ \ \ \\
\ \ \ \ \ \ \\
\ \ \ \ \ \ \\
\ \ \ \ \ \ \\
\end{array}
\]
\[
\begin{align*}
 & - 1.4 = \\
\end{align*}
\]
Read the problem, shade the models and solve.

1.) Gilbert drove 1.3 kilometer to the post office. Then he drove 1.5 kilometer to the store.

What is the total distance Gilbert drove? ________

2.) Write a decimal for the shaded models and solve.

_______ + _______ = _______

3.) Solve.

2.8 - 1.3 = _______
Read each problem and use the models to help solve.

1.) Corin has 2.6 liters of water.

If she drinks 0.4 liters of water after soccer practice, what will be the amount of water remaining?

__________________ liters

2.) Will had a piece of string 2.6 meters long. He cut off a 1.5 meter piece. How much string is left?

__________________ meters
1.) Shade and order the decimals from least to greatest.

0.5 0.45 0.63

2.) Order the decimals for the shaded models from greatest to least.
3.) Look at the shaded models.

Which of the following shows the decimals in order from greatest to least?

A 0.82; 0.07; 0.08
B 0.7; 0.8; 0.82
C 0.82; 0.8; 0.7
D 0.82; 0.7; 0.8
Read the problem and write an expression. Then shade the models and solve.

4.) The watermelon weighs 3.6 pounds. The cantaloupe weighs 1.1 pounds. How much does the watermelon and cantaloupe weigh in all?

Expression

Pounds
Read the problem. Use the model to solve.

5.) James ran 4.9 meters. Lilian ran 1.5 meters less than James. How far did Lilian run?

Expression ____________________________

__________ meters
\[
\begin{array}{cccc}
\hline
\text{____} & + & \text{____} & = \\
\hline
\end{array}
\]

\[
\begin{array}{cccc}
\hline
\text{____} & - & 0.22 & = \\
\hline
\end{array}
\]
1.) There are 2.58 liters of lemonade. Shade the amount of lemonade below.

Kara poured 1.3 liters into some cups. What will be the amount of lemonade remaining? ___________ liters

2.) Shade the decimals and solve.

1.25 + 1.32 = ___________
Read each problem and solve.

1.) The container has 2.56 milliliters of water.

Diego poured out 0.25 milliliters. How much water is remaining?

__________ milliliters

2.) Steven bought a toy for $1.45 and a snack for $1.20. How much money did he spend? Shade the decimal and solve.

$ __________
1.) Shade and order the decimals from least to greatest.

0.7
0.67
0.60

2.) Order the decimals for the shaded models from greatest to least.

3.) Look at the shaded models.

Which of the following shows the decimals in order from greatest to least?

A 0.2; 0.30; 0.6
B 0.6; 0.30; 0.2
C 0.6; 0.2; 0.30
D 0.30; 0.6; 0.2
Read the problem and write an expression. Then shade the models and solve.

4.) The fish weighs 2.45 pounds and the small snake weighs 1.23 pounds. How much more does the fish weigh than the snake?

Expression

\[\text{Expression} \]

\[\begin{array}{c}
\text{pounds} \\
\text{pounds} \\
\text{pounds} \\
\end{array} \]
5.) Mike walked 2.33 meters to work and 1.15 meters to the store. What is the total distance Mike walked?

Expression ___

__________ meters

6.) Mason threw a ball 5.73 meters. Nathan threw a ball 7.82 meters. Which expression can be used to find how much farther Nathan threw the ball than Mason?

A 5.73 + 7.82
B 7.8 + 5.73
C 7 – 5.73
D 7.82 – 5.73
The blue rain barrel collected 2.6 liters of water and the red rain barrel collected 3.3 liters of water. How much water was collected in the two rain barrels?

\[
\text{____} \quad \boxed{\text{____}} \quad = \quad \text{____} \text{ liters}
\]
Gabriel has $4.55. He spent $3.50 on his lunch. How much money does Gabriel have after buying his lunch?

\[
\begin{array}{ccc}
\$ & \square & \$ \\
\end{array}
\]

\[
\begin{array}{ccc}
\text{Grid 1} & \text{Grid 2} & \text{Grid 3} & \text{Grid 4} & \text{Grid 5}
\end{array}
\]
Read the problem and write an expression. Then, shade the models and solve.

1.) Rosa earned $2.50 for watering the flowers and $2.25 for taking out the trash. What is the total amount of money Rosa earned?

\[
\begin{array}{cccc}
\$ & \boxed{} & \$ & = & \$ \\
\end{array}
\]

\[
\begin{array}{cccc}
\quad & \boxed{} & \quad & = \quad \quad \quad \text{inches}
\end{array}
\]

2.) The grass is 2.4 inches tall. Later the grass was mowed and measured 1.3 inches tall. What is the difference in the height of the grass?

\[
\begin{array}{cccc}
\quad & \boxed{} & \quad & = \quad \quad \quad \quad \quad \text{inches}
\end{array}
\]
Read the problem. Then write an expression to solve the problem.

1.) Caitlin saved $19.67. She donated $8.25 to a charity. How much money does she have left?

Expression __________________________

2.) Jeremy bought 2.3 pounds of pineapple and 4.2 pounds of carrots at the farmer’s market. What is the total weight of pineapple and carrots he bought?

Expression __________________________

3.) Kristen improved her swimming time from 8.35 seconds to 6.24 seconds. By how much time did she improve?

Expression __________________________
1.) Order the decimals for the shaded models from greatest to least.

2.) Look at the shaded models.

Which of the following shows the decimals in order from greatest to least?

A 0.6; 0.30; 0.2
B 0.2; 0.30; 0.6
C 0.6; 0.2; 0.30
D 0.6; 0.20; 0.30
Read the problem and write an expression. Then, shade the models and solve.

3.) Joe finished the race in 5.5 minutes. Aiden finished in 4.2 minutes. How much faster did Aiden run than Joe?

\[
\begin{array}{c}
\square \\
\end{array}
\begin{array}{c}
\square \\
\end{array}
= \begin{array}{c}
\text{minutes} \\
\end{array}
\]

4.) Kim bought a hotdog for $1.25 and a bottle of water for $1.33. What is the total amount of money she spent?

\[
\begin{array}{c}
\$ \\
\end{array}
\begin{array}{c}
\$ \\
\end{array}
= \begin{array}{c}
\$ \\
\end{array}
\]
Read the problem. Then write an expression to solve the problem.

5.) Claire saved $25.29. She donated $13.15 to a charity that helps rescue animals. How much money does she have left?

Expression

6.) Nate bought 2.3 pounds of apples and 3.2 pounds of cucumbers at the farmer’s market. What is the total weight of apples and cucumbers he bought?

Expression

7.) Solve problem 6 using the models below.