Write the fraction for the shaded part.

1.) ________

2.) ________

3.) ________

4.) ________
Write the fraction for the shaded part.

1.) \(\frac{2}{6}\)

2.) \(\frac{5}{10}\)

3.) \(\frac{4}{8}\)

4.) \(\frac{6}{12}\)
Read the problem and answer the questions below.

1.) Lin divided her piece of paper into 10 equal parts. She used $\frac{9}{10}$ of the paper for a project. Shade the model to represent the amount of paper Lin used.

What is the denominator, the number of parts that make the whole?

What is the numerator, the number of parts Lin used?

How many tenths are shaded?

What fraction of the paper did Lin not use?

2.) Alex ate $\frac{2}{10}$ of the lasagna. Shade the model to represent the amount of lasagna Alex ate.

What is the denominator, the number of parts that make the whole?

What is the numerator, the number of parts Alex ate?

How many tenths are shaded?

What fraction of the lasagna was left after Alex ate?

Write the fraction for the amount shaded of the whole.

3.)

4.)

Shade the fraction.

5.) one-tenth
Tenths Tic Tac Toe

Directions:

1. Decide which player will play first. The other player will play second.
2. Decide who will be “X” and who will be “O.”
3. Take turns selecting a problem in the box. Write the fraction or shade in the box.
4. If the player’s answer is correct, then mark the box with either an “X” or an “O.”
5. Continue to take turns.
6. Play the game until one player has 3 boxes filled in any column, row, or diagonal.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4/10</td>
<td>one-tenth</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nine-tenths</td>
<td>1</td>
<td>7/10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5/10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\frac{10}{10})</td>
<td>seven-tenths</td>
<td>(\frac{0}{10})</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>four-tenths</td>
<td>eight-tenths</td>
<td>(\frac{2}{10})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Read the problem and answer the questions below.

1.) Lin divided her piece of paper into 10 equal parts. She used $\frac{9}{10}$ of the paper for a project. Shade the model to represent the amount of paper Lin used.

Which pieces shaded will vary.

What is the denominator, the number of parts that make the whole?

10

What is the numerator, the number of parts Lin used? 9

How many tenths are shaded? 9

What fraction of the paper did Lin not use? $\frac{1}{10}$
2.) Alex ate \(\frac{2}{10} \) of the lasagna. Shade the model to represent the amount of lasagna Alex ate.

Which pieces shaded will vary.

What is the denominator, the number of parts that make the whole?

10

What is the numerator, the number of parts Alex ate?

2

How many tenths are shaded?

2

What fraction of the lasagna was left after Alex ate?

\(\frac{8}{10} \)
Write the fraction for the amount shaded of the whole.

3.) \(\frac{8}{10} \)

4.) \(\frac{4}{10} \)

Shade the fraction.

5.) one-tenth
Tenths Tic Tac Toe

Directions:

1. Decide which player will play first. The other player will play second.
2. Decide who will be “X” and who will be “O.”
3. Take turns selecting a problem in the box. Write the fraction or shade in the box.
4. If the player’s answer is correct, then mark the box with either an “X” or an “O.”
5. Continue to take turns.
6. Play the game until one player has 3 boxes filled in any column, row, or diagonal.

<table>
<thead>
<tr>
<th>4/10</th>
<th>one-tenth</th>
<th>8/10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>nine-tenths</th>
<th>1</th>
<th>7/10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6/10</th>
<th>5/10</th>
<th>2/10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fraction</td>
<td>Description</td>
<td>Fraction</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------</td>
<td>------------</td>
</tr>
<tr>
<td>(\frac{10}{10})</td>
<td>seven-tenths</td>
<td>(\frac{1}{10})</td>
</tr>
<tr>
<td>(\frac{3}{10})</td>
<td>four-tenths</td>
<td>(\frac{2}{10})</td>
</tr>
<tr>
<td>(\frac{7}{10})</td>
<td>eight-tenths</td>
<td>(\frac{9}{10})</td>
</tr>
</tbody>
</table>
Write the fraction for the amount shaded of the whole.

1.) __________

2.) __________

Shade the fraction.

3.) \(\frac{5}{10} \)
4.) Choose the model that shows \(\frac{7}{10} \).

A

B

C

D
Write the fraction for the amount shaded of the whole.

1.) \[\frac{6}{10} \]

2.) \[\frac{3}{10} \]

3.) \[\frac{5}{10} \]

Shade the fraction.
4.) Choose the model that shows \(\frac{7}{10} \).

A

B

C

D
Write the fraction.

1.) __________

2.) __________

3.) __________
Shade the fraction.

4.) \(\frac{4}{10}\)

5.) \(\frac{1}{10}\)
Write the fraction.

1.) \[\frac{8}{10}\]

2.) \[\frac{3}{10}\]

3.) \[\frac{6}{10}\]
Shade the fraction.

4.) \(\frac{4}{10} \)

5.) \(\frac{1}{10} \)
1.) Katey and Rose shared a loaf of bread. Katey ate $\frac{2}{10}$ and Rose ate $\frac{4}{10}$ of the loaf of bread. How much bread did they eat?

Equation: ______________
2.) There is $\frac{8}{10}$ of a birthday cake. Kwantay ate $\frac{2}{10}$ of the cake. How much cake is left?

Equation: __________________________
1.) Katey and Rose shared a loaf of bread. Katey ate \(\frac{2}{10} \) and Rose ate \(\frac{4}{10} \) of the loaf of bread. How much bread did they eat?

\[
\text{Equation: } \frac{2}{10} + \frac{4}{10} = \frac{6}{10}
\]
2.) There is \(\frac{8}{10} \) of a birthday cake. Kwantay ate \(\frac{2}{10} \) of the cake. How much cake is left?

Equation: \(\frac{8}{10} - \frac{2}{10} = \frac{6}{10} \)
Shade the models and solve.

1.) $\frac{1}{10} + \frac{7}{10} = \underline{\ \ \ \ \ \ \ }$

2.) $\frac{8}{10} - \frac{4}{10} = \underline{\ \ \ \ \ \ \ }$
Write an equation and solve.

3.) There is \(\frac{9}{10} \) of a brownie left in the pan. David ate \(\frac{5}{10} \). How much of a brownie is left after David ate \(\frac{5}{10} \)?

4.) Write an addition equation for the picture below.

5.) Write a subtraction equation for the picture below.
Shade the models and solve.

1.) \(\frac{1}{10} + \frac{7}{10} = \frac{8}{10} \)

2.) \(\frac{8}{10} - \frac{4}{10} = \frac{4}{10} \)
Write an equation and solve.

3.) There is $\frac{9}{10}$ of a brownie left in the pan. David ate $\frac{5}{10}$. How much of a brownie is left after David ate $\frac{5}{10}$?

$$\frac{9}{10} - \frac{5}{10} = \frac{4}{10}$$

4.) Write an addition equation for the picture below.

$$\frac{3}{10} + \frac{2}{10} = \frac{5}{10}$$

5.) Write a subtraction equation for the picture below.

$$\frac{7}{10} - \frac{3}{10} = \frac{4}{10}$$
Write the fraction for the shaded amount of the whole.

1.) ________

Shade the whole to represent the fraction.

2.) \(\frac{6}{10} \)

Choose the correct answer.

3.) Which fraction does the model represent.

A \(\frac{7}{10} \)
B \(\frac{9}{10} \)
C \(\frac{1}{10} \)
D \(\frac{8}{10} \)
Shade the models and then solve.

4.) \(\frac{2}{10} + \frac{4}{10} = \)

\[\begin{array}{c|c|c}
\hline
\text{ } & \text{ } & \text{ } \\
\hline
\text{ } & \text{ } & \text{ } \\
\hline
\text{ } & \text{ } & \text{ } \\
\hline
\text{ } & \text{ } & \text{ } \\
\hline
\end{array} \]

\[+ \]

\[= \]

5.) \(\frac{6}{10} - \frac{3}{10} = \)

\[\begin{array}{c|c|c}
\hline
\text{ } & \text{ } & \text{ } \\
\hline
\text{ } & \text{ } & \text{ } \\
\hline
\text{ } & \text{ } & \text{ } \\
\hline
\text{ } & \text{ } & \text{ } \\
\hline
\end{array} \]

Write an equation and solve.

6.) Julie ran \(\frac{7}{10} \) of a mile. Dan ran \(\frac{2}{10} \) of a mile less than Julie. How far did Dan run?
Write the fraction for the shaded amount of the whole.

1.) \(\frac{7}{10} \)

Shade the whole to represent the fraction.

2.) \(\frac{6}{10} \)

Choose the correct answer.

3.) Which fraction does the model represent.

A \(\frac{7}{10} \) B \(\frac{9}{10} \) C \(\frac{1}{10} \) D \(\frac{8}{10} \)
Shade the models and then solve.

4.) \(\frac{2}{10} + \frac{4}{10} = \frac{6}{10} \)

\[
\begin{array}{c}
\boxed{\text{Shaded models}} \\
\boxed{+} \\
\boxed{=} \\
\boxed{\text{Shaded models}}
\end{array}
\]

5.) \(\frac{6}{10} - \frac{3}{10} = \frac{3}{10} \)

\[
\begin{array}{c}
\boxed{\text{Shaded models}} \\
\boxed{-} \\
\boxed{=} \\
\boxed{\text{Shaded models}}
\end{array}
\]

Write an equation and solve.

6.) Julie ran \(\frac{7}{10} \) of a mile. Dan ran \(\frac{2}{10} \) of a mile less than Julie. How far did Dan run?

\[
\frac{7}{10} - \frac{2}{10} = \frac{5}{10}
\]
Shade the model to represent the fraction.

1.) $\frac{24}{100}$

2.) $\frac{6}{100}$

3.) $\frac{19}{100}$
4.) It rained $\frac{59}{100}$ of a meter yesterday. Shade the model to represent how much it rained.

5.) _________

6.) _________
Hundredths Tic Tac Toe

Directions:
1. Decide which player will play first. The other player will play second.
2. Decide who will be “X” and who will be “O.”
3. Take turns selecting a problem in the box. Write the fraction or shade in the box.
4. If the player’s answer is correct, then mark the box with either an “X” or an “O.”
5. Continue to take turns.
6. Play the game until one player has 3 boxes in any column, row, or diagonal.
Shade the model to represent the fraction.

1.) \(\frac{24}{100} \)

2.) \(\frac{6}{100} \)

3.) \(\frac{19}{100} \)
4.) It rained \(\frac{59}{100} \) of a meter yesterday. Shade the model to represent how much it rained.

Write the fraction for the shaded model.

5.) \(\frac{38}{100} \)

6.) \(\frac{60}{100} \)
Hundredths Tic Tac Toe

Directions:

1. Decide which player will play first. The other player will play second.
2. Decide who will be “X” and who will be “O.”
3. Take turns selecting a problem in the box. Write the fraction or shade in the box.
4. If the player’s answer is correct, then mark the box with either an “X” or an “O.”
5. Continue to take turns.
6. Play the game until one player has 3 boxes in any column, row, or diagonal.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{3}{100}$</td>
<td>twenty five-hundredths</td>
<td>$\frac{44}{100}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\frac{78}{100}$</td>
<td>$\frac{26}{100}$</td>
<td>$\frac{60}{100}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Write the fraction for the shaded amount of the whole.

1.) __________

2.) Choose the model that has \(\frac{6}{10} \) shaded.

A

B

C

D
Use the model to solve.

3.) \(\frac{3}{10} + \frac{5}{10} = \) __________

4.) \(\frac{4}{10} - \frac{1}{10} = \) __________
Shade the model to represent the fraction.

5.) \(\frac{31}{100} \)

Write the fraction for the shaded model.

5.) __________

6.) __________
Choose the model that has $\frac{82}{100}$ shaded.
Write the fraction for the shaded amount of the whole.

1.) \(\frac{4}{10} \)

Choose the model that has \(\frac{6}{10} \) shaded.

A

B

C

D
Use the model to solve.

3.) \(\frac{3}{10} + \frac{5}{10} = \frac{8}{10} \)

4.) \(\frac{4}{10} - \frac{1}{10} = \frac{3}{10} \)
Shade the model to represent the fraction.

5.) \(\frac{31}{100} \)

Write the fraction for the shaded model.

5.) \(\frac{14}{100} \)

6.) \(\frac{52}{100} \)
8.) Choose the model that has $\frac{82}{100}$ shaded.

A

B

C

D
1.) It snowed \(\frac{13}{100}\) of a meter on Monday and \(\frac{16}{100}\) of a meter on Tuesday. It did not snow at all on Wednesday. How much snow fell in all 3 days?

\[
\begin{array}{cccc}
\Box & \Box & \Box & \Box \\
\end{array}
+
\begin{array}{cccc}
\Box & \Box & \Box & \Box \\
\end{array}
=
\begin{array}{cccc}
\Box & \Box & \Box & \Box \\
\end{array}

Equation: ________________________________
2.) Ana measured \(\frac{40}{100} \) of a meter of rain in the rain gauge, \(\frac{20}{100} \) of a meter later evaporated. How much rain is left in the rain gauge?

Equation: ______________________________
1. It snowed \(\frac{13}{100} \) of a meter on Monday and \(\frac{16}{100} \) of a meter on Tuesday. It did not snow at all on Wednesday. How much snow fell in all 3 days?

Equation: \(\frac{13}{100} + \frac{16}{100} = \frac{29}{100} \)
2.) Ana measured $\frac{40}{100}$ of a meter of rain in the rain gauge. $\frac{20}{100}$ of a meter later evaporated. How much rain is left in the rain gauge?

Equation: $\frac{40}{100} - \frac{20}{100} = \frac{20}{100}$
Shade the models and solve.

1.) \(\frac{23}{100} + \frac{44}{100} = \) _______

2.) \(\frac{80}{100} - \frac{20}{100} = \) _______
3.) It snowed three hundredths of a meter on Friday and four hundredths of a meter on Saturday. How much snow fell both days? Write an equation and solve.

\[\frac{3}{100} + \frac{4}{100} = \frac{7}{100} \]

Write the fraction.

4.) sixty-six hundredths

5.) nine hundredths

6.) ninety six hundredths
Shade the models and solve.

1.) \(\frac{23}{100} + \frac{44}{100} = \frac{67}{100} \)

2.) \(\frac{80}{100} - \frac{20}{100} = \frac{60}{100} \)
3.) It snowed three hundredths of a meter on Friday and four hundredths of a meter on Saturday. How much snow fell both days? Write an equation and solve.

\[\frac{3}{100} + \frac{4}{100} = \frac{7}{100} \]

Write the fraction.

4.) sixty-six hundredths \[\frac{66}{100} \]

5.) nine hundredths \[\frac{9}{100} \]

6.) ninety six hundredths \[\frac{96}{100} \]
1.) Choose the best answer. Which fraction represents the shaded model?

![Shaded Model Diagram]

A \(\frac{25}{100} \)
B \(\frac{35}{100} \)
C \(\frac{36}{100} \)
D \(\frac{65}{100} \)

Shade the model and solve

2.) \(\frac{8}{10} - \frac{3}{10} = \) ______
Write the fraction.

3.) _________

Shade the models and solve.

4.) \(\frac{32}{100} + \frac{18}{100} = \) _________

5.) \(\frac{56}{100} - \frac{14}{100} = \) _________
Write the fraction.

6.) eight hundredths __________

7.) forty-three hundredths __________

8.) Shade the models and solve.

\[
\frac{67}{100} + \frac{22}{100} = ______
\]

![Models and equations]

A \[\frac{99}{100}\]
B \[\frac{91}{100}\]
C \[\frac{89}{100}\]
D \[\frac{98}{100}\]
1.) Choose the best answer. Which fraction represents the shaded model?

![Shaded Model]

A \(\frac{25}{100} \)
B \(\frac{35}{100} \)
C \(\frac{36}{100} \)
D \(\frac{65}{100} \)

Shade the model and solve

2.) \(\frac{8}{10} - \frac{3}{10} = \frac{5}{10} \)
Write the fraction.

3.) \(\frac{6}{10} \)

Shade the models and solve.

4.) \(\frac{32}{100} + \frac{18}{100} = \frac{50}{100} \)

5.) \(\frac{56}{100} - \frac{14}{100} = \frac{42}{100} \)
Write the fraction.

6.) eight hundredths \(\frac{8}{100} \)

7.) forty-three hundredths \(\frac{43}{100} \)

8.) Shade the models and solve.

\[\frac{67}{100} + \frac{22}{100} = \frac{89}{100} \]

\[\begin{array}{c}
\text{A} \quad \frac{99}{100} \\
\text{B} \quad \frac{91}{100} \\
\text{C} \quad \frac{89}{100} \\
\text{D} \quad \frac{98}{100}
\end{array} \]
Use the fraction bar to help find the equivalent fraction.

1.) \(\frac{4}{5} = \frac{10}{10} \)

2.) \(\frac{2}{3} = \frac{12}{12} \)

3.) \(\frac{1}{3} = \frac{6}{6} \)

4.) \(\frac{1}{2} = \frac{8}{8} \)
Use the fraction bar to help find the equivalent fraction.

1.) \(\frac{4 \times 2}{5 \times 2} = \frac{8}{10} \)

2.) \(\frac{2 \times 4}{3 \times 4} = \frac{8}{12} \)

3.) \(\frac{1 \times 2}{3 \times 2} = \frac{2}{6} \)

4.) \(\frac{1 \times 4}{2 \times 4} = \frac{4}{8} \)
Module FDR
Lesson 5
Modeled Practice
\[
\frac{60}{100} \equiv \frac{6}{10}
\]
Shade the model and use multiplication to find the equivalent fraction.

1.)

\[
\frac{4}{10} = \frac{100}{10}
\]

2.)

\[
\frac{8}{10} = \frac{100}{10}
\]
3.)

\[
\frac{3}{10} = \frac{\square}{100}
\]

4.) Marcus measured the width of his fingernail to be \(\frac{2}{10}\) of a centimeter. Shade the models and use multiplication to find the equivalent fraction in hundredths.

\[
\frac{2}{10} = \frac{\square}{100}
\]

The width of Marcus’ fingernail in hundredths is \(\underline{\hspace{2cm}}\).
Shade the model and use multiplication to find the equivalent fraction.

1.)

\[
\frac{4 \times 10}{10 \times 10} = \frac{40}{100}
\]

2.)

\[
\frac{8 \times 10}{10 \times 10} = \frac{80}{100}
\]
3.)

\[
\frac{3}{10} = \frac{30}{100}
\]

4.) Marcus measured the width of his fingernail to be \(\frac{2}{10}\) of a centimeter.

Shade the models and use multiplication to find the equivalent fraction in hundredths.

\[
\frac{2}{10} = \frac{20}{100}
\]

The width of Marcus’ fingernail in hundredths is \(\frac{20}{100}\).
Use the models below to solve.

1.) \(\frac{25}{100} - \frac{15}{100} = \) ________

Write the fraction.

2.) three-tenths _________

3.) nine-hundredths _________

4.) fifty-six hundredths _________

Shade the model and use multiplication to find the equivalent fraction.

5.)

\[
\frac{6}{10} = \frac{\text{square}}{100}
\]
Shade the model and use multiplication to find the equivalent fraction.

6.)

\[\frac{2}{10} = \frac{20}{100} \]

7.)

\[\frac{9}{10} = \frac{90}{100} \]
Choose the best answer.

8.) Which model represents the number of hundredths that are equivalent to \(\frac{5}{10}\)?

A

B

C

D
Use the models below to solve.

1.) \(\frac{25}{100} - \frac{15}{100} = \frac{10}{100} \)

Write the fraction.

2.) three-tenths \(\frac{3}{10} \)

3.) nine-hundredths \(\frac{9}{100} \)

4.) fifty-six hundredths \(\frac{56}{100} \)

Shade the model and use multiplication to find the equivalent fraction.

5.) \[\frac{6 \times 10}{10 \times 10} = \frac{60}{100} \]
Shade the model and use multiplication to find the equivalent fraction.

6.)

\[
\frac{2}{10} = \frac{20}{100}
\]

7.)

\[
\frac{9}{10} = \frac{90}{100}
\]
Choose the best answer.

8.) Which model represents the number of hundredths that are equivalent to \(\frac{5}{10} \)?

A

B

C

D
Compare using greater than $>$, less than $<$, or equal $=$

1.) \[\frac{20}{100} \bigcirc \frac{90}{100} \]

2.) \[\frac{56}{100} \bigcirc \frac{54}{100} \]

3.) \[\frac{9}{100} \bigcirc \frac{35}{100} \]

4.) \[\frac{81}{100} \bigcirc \frac{18}{100} \]
Compare using greater than $>$, less than $<$, or equal $=$

1.) \(\frac{20}{100} \quad \text{\textless} \quad \frac{90}{100} \)

2.) \(\frac{56}{100} \quad \text{\textgreater} \quad \frac{54}{100} \)

3.) \(\frac{9}{100} \quad \text{\textgreater} \quad \frac{35}{100} \)

4.) \(\frac{81}{100} \quad \text{\textgreater} \quad \frac{18}{100} \)
Shade the model and use multiplication to find the equivalent fraction.

\[
\frac{7}{10} \quad \bigcirc \quad \frac{68}{100}
\]

\[
\frac{7}{10} = \frac{7}{10}
\]
Shade the model and use multiplication to find the equivalent fraction.

\[
\frac{68}{100} \quad \text{and} \quad \frac{70}{100}
\]
Shade the models to represent the two fractions. Find a fraction with a common denominator, and then write < or >.

1.) \(\frac{6}{10} \bigcirc \frac{56}{100} \)

\[
\begin{align*}
\text{\frac{6}{10} } &= \frac{6}{100} \\
\text{\frac{56}{100} } &= \frac{56}{100}
\end{align*}
\]

2.) \(\frac{48}{100} \bigcirc \frac{5}{10} \)

\[
\begin{align*}
\text{\frac{48}{100} } &= \frac{48}{100} \\
\text{\frac{5}{10} } &= \frac{5}{100}
\end{align*}
\]
3.) \(\frac{4}{10} \bigcirc \frac{47}{100} \)

Use the model to solve the problem.

4.) Martin walks \(\frac{76}{100} \) of a mile to school. Christina walks \(\frac{8}{10} \) of a mile to school. Who walks further to school?

\[
\frac{76}{100} \quad \text{and} \quad \frac{8}{10} = \frac{80}{100}
\]

_______________ walks further to school.
Shade the models to represent the two fractions. Find a fraction with a common denominator, and then write < or >.

1.) \[\frac{6}{10} \quad > \quad \frac{56}{100} \]

2.) \[\frac{48}{100} \quad < \quad \frac{5}{10} \]
3.) \(\frac{4}{10} < \frac{47}{100} \)

Use the model to solve the problem.

4.) Martin walks \(\frac{76}{100} \) of a mile to school. Christina walks \(\frac{8}{10} \) of a mile to school. Who walks further to school?

\[\frac{76}{100} \]

\[\frac{8}{10} = \frac{80}{100} \]

Christina walks further to school.
Shade the model and use multiplication to find the equivalent fraction.

1.) \[
\begin{array}{c}
\frac{4}{10} = \frac{}{100}
\end{array}
\]

2.) Choose the model that represents the number of hundredths that are equivalent to \(\frac{7}{10}\).
Shade the models to represent the two fractions. Find a fraction with a common denominator, and then write < or >.

3.) $\frac{4}{10}$ \bigcirc $\frac{37}{100}$

Use the models to solve the problem.

4.) $\frac{77}{100}$ \bigcirc $\frac{7}{10}$
5.) \(\frac{9}{10} \bigcirc \frac{93}{100} \)

6.) Choose the letter that shows the fractions compared correctly.

A \(\frac{4}{10} < \frac{38}{100} \)

B \(\frac{8}{10} > \frac{81}{100} \)

C \(\frac{5}{10} < \frac{54}{100} \)

D \(\frac{33}{100} < \frac{3}{10} \)
Shade the model and use multiplication to find the equivalent fraction.

1.)

\[
\frac{4}{10} = \frac{40}{100}
\]

2.) Choose the model that represents the number of hundredths that are equivalent to \(\frac{7}{10} \).

- A
- B
- C
- D
Shade the models to represent the two fractions. Find a fraction with a common denominator, and then write < or >.

3.) \(\frac{4}{10} \quad \text{>} \quad \frac{37}{100} \)

\[
\frac{4}{10} = \frac{40}{100} \\
\frac{37}{100}
\]

Use the models to solve the problem.

4.) \(\frac{77}{100} \quad \text{<} \quad \frac{7}{10} \)

\[
\frac{77}{100} \\
\frac{7}{10} = \frac{70}{100}
\]
5.) \(\frac{9}{10} \ < \ \frac{93}{100} \)

\(\frac{9}{10} = \frac{90}{100} \)

\(\frac{93}{100} \)

6.) Choose the letter that shows the fractions compared correctly.

A \(\frac{4}{10} \ < \ \frac{38}{100} \)

B \(\frac{8}{10} \ > \ \frac{81}{100} \)

C \(\frac{5}{10} \ < \ \frac{54}{100} \)

D \(\frac{33}{100} \ < \ \frac{3}{10} \)
Ernesto has some pictures printed on shaded paper. What part of his pictures are printed on shaded paper?
Modeled Practice #1 Key

Lesson 7

Module FDR

ones	**tenths**
0 | 4

ones	**tenths**
0 | 7
Ernesto has some pictures printed on shaded paper. What part of his pictures are printed on shaded paper?
Write the fraction and decimal for the shaded area.

1.)

2.)
Shade and write the decimal.

3.)

\[
\begin{array}{c}
\hline
1 & \frac{2}{10} \\
\hline
\end{array}
\]

4.)

\[
\begin{array}{c}
\hline
8 & \frac{9}{10} \\
\hline
\end{array}
\]
Write and read the fraction and decimal for the shaded model.

5.)

fraction ____________ decimal ____________

6.)

fraction ____________ decimal ____________
Write and read the fraction and decimal for the shaded model.

7.)

fraction ___________ decimal ___________

8.)

fraction ___________ decimal ___________

9.)

fraction ___________ decimal ___________
Write the fraction and decimal for the shaded area.

1.)

\[
\begin{array}{c}
\frac{9}{10} \\
\hline
\end{array}
\]

<table>
<thead>
<tr>
<th>ones</th>
<th>tenths</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9</td>
</tr>
</tbody>
</table>

2.)

\[
\begin{array}{c}
1 \quad 3 \\
\hline
\end{array}
\]

<table>
<thead>
<tr>
<th>ones</th>
<th>tenths</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>
Shade and write the decimal.

3.)

![Shaded and shaded with two unshaded columns](image)

\[\frac{1}{2} \]

\[\begin{array}{c|c} \text{ones} & \text{tenths} \\ \hline 1 & 2 \\ \end{array} \]

4.)

![Shaded with eight unshaded columns](image)

\[\frac{8}{10} \]

\[\begin{array}{c|c} \text{ones} & \text{tenths} \\ \hline 0 & 8 \\ \end{array} \]
Write and read the fraction and decimal for the shaded model.

5.)

\[
\begin{array}{ll}
\text{fraction} & \frac{1}{10} \\
\text{decimal} & 0.1 \\
\end{array}
\]

6.)

\[
\begin{array}{ll}
\text{fraction} & \frac{6}{10} \\
\text{decimal} & 0.6 \\
\end{array}
\]
Write and read the fraction and decimal for the shaded model.

7.)

fraction $\frac{5}{10}$
decimal 0.5

8.)

fraction $\frac{1}{10} \ 7$
decimal 0.7

9.)

fraction $\frac{3}{10}$
decimal 0.3
Shade the model and use multiplication to find the equivalent fraction.

1.) Shade the model and calculate the equivalent fraction.

\[
\frac{5}{10} = \frac{\square}{100}
\]

2.) Choose the model that represents the number of hundredths that are equivalent to \(\frac{4}{10}\).

- A
- B
- C
- D
3.) Choose the letter that shows the fractions compared correctly.

A \(\frac{9}{10} < \frac{86}{100} \)
B \(\frac{2}{10} > \frac{23}{100} \)
C \(\frac{5}{10} < \frac{45}{100} \)
D \(\frac{77}{100} < \frac{8}{10} \)

4.) Write the fraction and decimal for the shaded area.

\[\begin{array}{c|c}
\text{ones} & \text{tenths} \\
\hline
\hline
\hline
\end{array} \]
5.) Choose the letter of the model with 0.6 shaded.

A

B

C

D

6.) Which fraction represents the decimal number 0.9?

A \(\frac{9}{10} \)

B \(\frac{9}{10} \)

C \(\frac{90}{100} \)

D \(\frac{7}{100} \)
Shade the model and use multiplication to find the equivalent fraction.

1.)

\[
\frac{5}{10} = \frac{50}{100}
\]

2.) Choose the model that represents the number of hundredths that are equivalent to \(\frac{4}{10} \).

- **A**
- **B**
- **C**
- **D**
3.) Choose the letter that shows the fractions compared correctly.

A $\frac{9}{10} < \frac{86}{100}$

C $\frac{5}{10} < \frac{45}{100}$

B $\frac{2}{10} > \frac{23}{100}$

D $\frac{77}{100} < \frac{8}{10}$

4.) Write the fraction and decimal for the shaded area.

\[\frac{8}{10} \]

<table>
<thead>
<tr>
<th>ones</th>
<th>tenths</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8</td>
</tr>
</tbody>
</table>
5.) Choose the letter of the model with 0.6 shaded.

A

B

C

D

6.) Which fraction represents the decimal number 0.9?

A \(\frac{9}{10} \)

B \(\frac{90}{100} \)

C \(\frac{90}{100} \)

D \(\frac{7}{100} \)
Module FDR
Lesson 8
Modeled Practice #1

1. Place a dot in the hundreds column of the table.

2. The hundreds column is 1.

3. Place a dot in the tens column of the table.

4. The tens column is 1.

5. Place a dot in the ones column of the table.

6. The ones column is 1.

7. The number represented by the grid is 1.11.
<table>
<thead>
<tr>
<th>ones</th>
<th>tenths</th>
<th>hundredths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modeled Practice #1 Key

Lesson 8

<table>
<thead>
<tr>
<th>ones</th>
<th>tenths</th>
<th>hundredths</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
</tbody>
</table>

Diagram 1

- **9**
- **100**

Diagram 2

- **28**
- **100**

<table>
<thead>
<tr>
<th>ones</th>
<th>tenths</th>
<th>hundredths</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>8</td>
</tr>
</tbody>
</table>
Module FDR
Lesson 8
Modeled Practice #2 Key

The Meadows Center for Preventing Educational Risk—Mathematics Institute
The University of Texas at Austin ©2012 University of Texas System/Texas Education Agency
Write the fraction and decimal for the shaded area.

1.)

<table>
<thead>
<tr>
<th>ones</th>
<th>tenths</th>
<th>hundredths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.)

<table>
<thead>
<tr>
<th>ones</th>
<th>tenths</th>
<th>hundredths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Shade the model and write the decimal.

3.)

\[
\begin{array}{c|c|c}
\text{ones} & \text{tenths} & \text{hundredths} \\
1 & 52 & \ \ \\
\hline
100 & & \\
\end{array}
\]
Write and read the fraction and decimal for the shaded model.

1.)

fraction ______________ decimal ______________

2.)

fraction ______________ decimal ______________
3.)

<table>
<thead>
<tr>
<th>Grid 1</th>
<th>Grid 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

fraction ___________ decimal ___________

4.)

<table>
<thead>
<tr>
<th>Grid 1</th>
<th>Grid 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

fraction ___________ decimal ___________
Write the fraction and decimal for the shaded area.

1.)

\[
\begin{array}{c|c|c}
\text{ones} & \text{tenths} & \text{hundredths} \\
0 & 0 & 1 \\
\end{array}
\]

\[
\frac{1}{100}
\]

2.)

\[
\begin{array}{c|c|c}
\text{ones} & \text{tenths} & \text{hundredths} \\
0 & 3 & 9 \\
\end{array}
\]

\[
\frac{39}{100}
\]
Shade the model and write the decimal.

3.)

\[
\begin{array}{c|c|c}
\text{ones} & \text{tenths} & \text{hundredths} \\
1 & 5 & 2 \\
\end{array}
\]
Write and read the fraction and decimal for the shaded model.

1.)

\[
\text{fraction } \frac{19}{100} \quad \text{decimal } 0.19
\]

2.)

\[
\text{fraction } \frac{21}{100} \quad \text{decimal } 0.21
\]
3.)

\[
\begin{array}{c}
\text{fraction} \quad \frac{63}{100} \\
\text{decimal} \quad 1.63
\end{array}
\]

4.)

\[
\begin{array}{c}
\text{fraction} \quad \frac{4}{100} \\
\text{decimal} \quad 1.04
\end{array}
\]
1.) Choose the letter that shows the fractions compared correctly.

A $\frac{5}{10} < \frac{53}{100}$

B $\frac{2}{10} > \frac{40}{100}$

C $\frac{6}{10} > \frac{67}{100}$

D $\frac{8}{100} = \frac{8}{10}$

2.) Write the fraction and decimal for the shaded area.

fraction ____________ decimal ____________
3.) Choose the best answer. Which model represents 0.4?

A

B

C

D

4.) Which fraction represents the decimal number 0.2?

A \[\frac{2}{10} \]

B \[\frac{20}{100} \]

C \[\frac{2}{100} \]

D 2
5.) Write the fraction and decimal for the shaded area.

6.) Shade and write the decimal.
7.) Micah was recording information in science class. His lab partner stated it rained one and thirty-six hundredths of a centimeter. Which of the following decimal numbers should Micah write on his paper?

A 1.26
B 0.36
C 1.06
D 1.36
1.) Choose the letter that shows the fractions compared correctly.

A \(\frac{5}{10} < \frac{53}{100} \)

B \(\frac{2}{10} > \frac{40}{100} \)

C \(\frac{6}{10} > \frac{67}{100} \)

D \(\frac{8}{100} = \frac{8}{10} \)

2.) Write the fraction and decimal for the shaded area.

Fraction \(\frac{4}{10} \)

Decimal 0.4
3.) Choose the best answer. Which model represents 0.4?

A

B

C

D

4.) Which fraction represents the decimal number 0.2?

A $\frac{2}{10}$

B $\frac{20}{100}$

C $\frac{2}{100}$

D 2
5.) Write the fraction and decimal for the shaded area.

\[\frac{64}{100} \]

<table>
<thead>
<tr>
<th></th>
<th>ones</th>
<th>tenths</th>
<th>hundredths</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

6.) Shade and write the decimal.

\[1 \frac{91}{100} \]

<table>
<thead>
<tr>
<th></th>
<th>ones</th>
<th>tenths</th>
<th>hundredths</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
7.) Micah was recording information in science class. His lab partner stated it rained one and thirty-six hundredths of a centimeter. Which of the following decimal numbers should Micah write on his paper?

A 1.26
B 0.36
C 1.06
D 1.36
Read the following decimals:

1.2 6.8 3.47 4.09

Write the number in the place value chart and in expanded notation.

378

<table>
<thead>
<tr>
<th>Thousands</th>
<th>Hundreds</th>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

= + +

5,107

<table>
<thead>
<tr>
<th>Thousands</th>
<th>Hundreds</th>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Read the following decimals:

1.2
 one and two tenths

6.8
 six and eight tenths

3.47
 three and forty-seven hundredths

4.09
 four and nine hundredths

Write the number in the place value chart and in expanded notation.

378

<table>
<thead>
<tr>
<th>Thousands</th>
<th>Hundreds</th>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

300 + 70 + 8

5,107

<table>
<thead>
<tr>
<th>Thousands</th>
<th>Hundreds</th>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>7</td>
</tr>
</tbody>
</table>

5,000 + 100 + 7
8.36

<table>
<thead>
<tr>
<th>ones</th>
<th>tenths</th>
<th>hundredths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>![Black dot]</td>
<td></td>
</tr>
</tbody>
</table>

______ + ______ + ______
8.36

<table>
<thead>
<tr>
<th>ones</th>
<th>tenths</th>
<th>hundredths</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
8.0 & + 0.3 + 0.06
\end{align*}
\]
Write the number in the place value chart and then in expanded notation.

1.) 3.7

<table>
<thead>
<tr>
<th>ones</th>
<th>tenths</th>
<th>hundredths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.) 4.62

<table>
<thead>
<tr>
<th>ones</th>
<th>tenths</th>
<th>hundredths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.) 9.08

<table>
<thead>
<tr>
<th>ones</th>
<th>tenths</th>
<th>hundredths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Write the number in the place value chart and then in expanded notation.

1.) 3.7

<table>
<thead>
<tr>
<th>ones</th>
<th>tenths</th>
<th>hundredths</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>

3.0 + 0.7

2.) 4.62

<table>
<thead>
<tr>
<th>ones</th>
<th>tenths</th>
<th>hundredths</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

4.0 + 0.6 + 0.02

3.) 9.08

<table>
<thead>
<tr>
<th>ones</th>
<th>tenths</th>
<th>hundredths</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>0</td>
<td>8</td>
</tr>
</tbody>
</table>

9.0 + 0.08
Write the fraction and decimal for the amount shown.

1.)

2.)
Write the number in the place value chart and then in expanded notation.

3.) 8.5

<table>
<thead>
<tr>
<th>ones</th>
<th>tenths</th>
<th>hundredths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.) 2.93

<table>
<thead>
<tr>
<th>ones</th>
<th>tenths</th>
<th>hundredths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.) 7.01

<table>
<thead>
<tr>
<th>ones</th>
<th>tenths</th>
<th>hundredths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6.) Choose the letter that shows the expanded notation for 6.38.

A 6.0 + 0.8 + 0.03
B 600 + 30 + 8.0
C 6.0 + 0.3 + 0.08
D 6.0 + 3.0 + 8.0
Write the fraction and decimal for the amount shown.

1.)

\[
\begin{array}{c|c}
\text{ones} & \text{tenths} \\
\hline
0 & 7 \\
\end{array}
\]

\[
\frac{7}{10}
\]

2.)

\[
\begin{array}{c|c|c}
\text{ones} & \text{tenths} & \text{hundredths} \\
\hline
1 & 3 & 8 \\
\end{array}
\]

\[
\frac{38}{100}
\]
Write the number in the place value chart and then in expanded notation.

3.) 8.5

<table>
<thead>
<tr>
<th>ones</th>
<th>tenths</th>
<th>hundredths</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

8.0 + 0.5

4.) 2.93

<table>
<thead>
<tr>
<th>ones</th>
<th>tenths</th>
<th>hundredths</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>9</td>
<td>3</td>
</tr>
</tbody>
</table>

2.0 + 0.9 + 0.03

5.) 7.01

<table>
<thead>
<tr>
<th>ones</th>
<th>tenths</th>
<th>hundredths</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>0</td>
<td>41</td>
</tr>
</tbody>
</table>

7.0 + 0.01

6.) Choose the letter that shows the expanded notation for 6.38.

A 6.0 + 0.8 + 0.03
B 600 + 30 + 8.0
C 6.0 + 0.3 + 0.08
D 6.0 + 3.0 + 8.0
Module FDR Lesson 10 Modeled Practice #1

1.0
0.7
0.5
0.0

fraction

decimal

\(\frac{5}{10} \)
\(\frac{7}{10} \)

STOP
Modeled Practice #1 Key

1.0

0.7

0.5

0.0

\[\frac{7}{10} \]

\[\frac{5}{10} \]

fraction
decimal
Identify each point on the number line.

1.) What fraction represents point K?
2.) What fraction represents point M?
3.) What fraction represents point N?
4.) What decimal represents point C?
5.) What decimal represents point A?
6.) What decimal represents point B?
Activity 2
Identify each point on the number line.

1.) What fraction represents point L? __________ 2.) Point C? __________ 3.) Point T? __________

4.) What decimal represents point M? __________ 5.) Point Q? __________ 6.) Point X? __________
Identify each point on the number line.

1.) What fraction represents point K? $\frac{5}{10}$
2.) What fraction represents point M? $\frac{3}{10}$
3.) What fraction represents point N? $\frac{8}{10}$
4.) What decimal represents point C? 1.7
5.) What decimal represents point A? 1.3
6.) What decimal represents point B? 1.9
Activity 2

Identify each point on the number line.

1.) What fraction represents point L? \(\frac{3}{10}\)
2.) Point C? \(\frac{5}{10}\)
3.) Point T? \(\frac{7}{10}\)

4.) What decimal represents point M? 1.8
5.) Point Q? 0.8
6.) Point X? 0.3
Write the fraction and decimal for the amount shown.

1.)

\[
\begin{array}{c}
\text{ones} \\
\text{tenths}
\end{array}
\]

2.)

\[
\begin{array}{c}
\text{ones} \\
\text{tenths} \\
\text{hundredths}
\end{array}
\]
Write the number in the place value chart and then in expanded notation.

3.) 6.2

<table>
<thead>
<tr>
<th>ones</th>
<th>tenths</th>
<th>hundredths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.) Choose the letter that shows the number expression for 5.15.
 A. 5.0 + 0.1
 B. 500 + 15
 C. 5.0 + 0.5 + 0.1
 D. 5.0 + 0.1 + 0.05

5.) What fraction represents point C?

6.) What decimal represents point L?
Write the fraction and decimal for the amount shown.

1.)

\[
\begin{array}{c}
\frac{8}{10} \\
0 \cdot 8
\end{array}
\]

1. \(\frac{8}{10} \)

2.)

\[
\begin{array}{c}
1 \cdot 56 \\
1 \cdot 5 \cdot 6
\end{array}
\]

2. \(\frac{56}{100} \)

<table>
<thead>
<tr>
<th>ones</th>
<th>tenths</th>
<th>hundredths</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>
Write the number in the place value chart and then in expanded notation.

3.) 6.2

<table>
<thead>
<tr>
<th>ones</th>
<th>tenths</th>
<th>hundredths</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

\[6.0 + 0.2 \]

4.) Choose the letter that shows the number expression for 5.15.

 A 5.0 + 0.1
 B 500 + 15
 C 5.0 + 0.5 + 0.1
 D 5.0 + 0.1 + 0.05

5.) What fraction represents point C? \[\frac{9}{10} \]

6.) What decimal represents point L? \[1.5 \]
Write the fraction and decimal for the shaded models.

fraction
decimal

fraction
decimal

Use a point to represent the fractions and decimals above on the number line.
Write the fraction and decimal for the shaded models.

- fraction \(\frac{9}{10}\)
 - decimal 0.9

- fraction \(\frac{1}{10}\)
 - decimal 1.6

Use a point to represent the fractions and decimals above on the number line.
1.) Write the missing fraction on the number line.

2.) Write the missing decimal on the number line.
1.) Write the missing fraction on the number line.

2.) Write the missing decimal on the number line.
Write the number in the place value chart and then in expanded form.

1.) 9.24

<table>
<thead>
<tr>
<th>ones</th>
<th>tenths</th>
<th>hundredths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.) Choose the letter that shows the expanded form for 5.57.
 - A 7.0 + 0.7
 - B 7.0 + 0.07
 - C 5.0 + 0.5 + 0.07
 - D 7.0 + 0.75

3.) What fraction represents point J?

4.) What decimal represents point L?
5.) Write the decimal for point K. ____________

6.) Jayden is finding points on a number line. What decimal best represents point F?

A 10
B 8.9
C 9.7
D 9.9
Write the number in the place value chart and then in expanded form.

1.) 9.24

<table>
<thead>
<tr>
<th>ones</th>
<th>tenths</th>
<th>hundredths</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

9.0 + 3.0 + .04

2.) Choose the letter that shows the expanded form for 5.57.
 A 7.0 + 0.7
 B 7.0 + 0.07
 C 5.0 + 0.5 + 0.07
 D 7.0 + 0.75

3.) What fraction represents point J? \(\frac{3}{10} \)

4.) What decimal represents point L? 7.3
5.) Write the decimal for point K. **8.6**

6.) Jayden is finding points on a number line. What decimal best represents point F?

 - A 10
 - B 8.9
 - C 9.7
 - D **9.9**
Write the decimal for each blank box on the number line.
Write the decimal for each blank box on the number line.

3.1
3.3
3.47
4.6
4.8
Activity 1
Write the decimal for the shaded models.

1.)

2.) Shade 0.3 and 0.30.

3.) Write 2 equivalent decimals and then shade the matching amounts.
Activity 2
Write the decimal for the shaded models.

1.)

2.) Shade 0.2 and 0.20.

3.) Write 2 equivalent decimals and then shade the matching amounts.

______ = ______

______ = ______

______ = ______
Activity 1
Write the decimal for the shaded models.

1.)

\[
\begin{array}{c}
\text{0.9} \\
\hline
\text{0.90}
\end{array}
\]

2.) Shade 0.3 and 0.30.

3.) Write 2 equivalent decimals and then shade the matching amounts.

\[\text{answers will vary} \]
Activity 2
Write the decimal for the shaded models.

1.)

\[
\begin{array}{c}
0.6 \quad = \quad 0.60
\end{array}
\]

2.) Shade 0.2 and 0.20.

3.) Write 2 equivalent decimals and then shade the matching amounts.

\[
\text{answers will vary}
\]
1.) Choose the letter that shows the expanded form for 7.57.
 A 7.0 + 0.7
 B 7.0 + 0.07
 C 7.0 + 0.5 + 0.07
 D 7.0 + 0.75

2.) What decimal represents point J? ____________

3.) What decimal represents point L? ____________

4.) Nora is finding points on a number line. What decimal best represents point S?
 A 3.3
 B 3.2
 C 2.2
 D 3.4
Write the equivalent decimals for the shaded models.

5.)

\[
\begin{array}{c}
\text{Model 1} \\
\text{Model 2}
\end{array}
\]

\[\quad = \quad\]

6.) Shade 0.8 and 0.80.

\[
\begin{array}{c}
\text{Model 1} \\
\text{Model 2}
\end{array}
\]

\[\quad = \quad\]
7.) Which statement is true about the shaded models below?

A 0.50 > 0.5
B 0.05 > 0.5
C 0.5 = 0.05
D 0.50 = 0.5
1.) Choose the letter that shows the expanded form for 7.57.
 A 7.0 + 0.7
 B 7.0 + 0.07
 C 7.0 + 0.5 + 0.07
 D 7.0 + 0.75

2.) What decimal represents point J? 4.7

3.) What decimal represents point L? 5.6

4.) Nora is finding points on a number line. What decimal best represents point S?
 A 3.3
 B 3.2
 C 2.2
 D 3.4
Write the equivalent decimals for the shaded models.

5.)

\[
\begin{array}{c}
\text{0.4} \\
= \\
\text{0.40}
\end{array}
\]

6.) Shade 0.8 and 0.80.
7.) Which statement is true about the shaded models below?

![Shaded models](image)

A 0.50 > 0.5
B 0.05 > 0.5
C 0.5 = 0.05
D 0.50 = 0.5
greater than

\[
\frac{1}{10} \quad \bigcirc \quad \frac{2}{10}
\]

less than

fraction

<____> \bigcirc <____>

decimal

<____> \bigcirc <____>
Module FDR
Lesson 13
Modeled Practice #2

0.50 ○ 0.45

___ ○ ___
0.5 0.58
greater than: \(\frac{1}{10} \) \(\leq \) \(\frac{2}{10} \)

less than: \(\frac{0.60}{100} \) \(> \) \(\frac{0.58}{100} \)
0.50 > 0.45

\[
\frac{5}{10} > \frac{45}{100}
\]
0.5 < 0.58
Activity 1
Shade and compare using >, <, or =.

1.)

0.4 0.26

2.)

0.4 0.60
Shade and compare using $>$, $<$, or $\ =\$.

3.)

\[
\begin{array}{c}
\text{Shade and compare using } > , < , \text{ or } = . \\
0.77 \quad \bigcirc \quad 0.67
\end{array}
\]

4.)

\[
\begin{array}{c}
0.4 \quad \bigcirc \quad 0.6
\end{array}
\]
Activity 2
Write the decimal for the shaded models. Then, compare using >, <, or =.

1.)

2.)
Write the decimal for the shaded models. Then, compare using >, <, or =.

3.)

![Shaded models for 3.]

4.)

![Shaded models for 4.]

_______ 〇 _______
Activity 1
Shade and compare using >, <, or =.

1.)

\[
\begin{array}{c}
\text{0.4} \\
\text{>}
\end{array}
\]

2.)

\[
\begin{array}{c}
\text{0.4} \\
\text{<}
\end{array}
\]

\[
\begin{array}{c}
\text{0.26} \\
\text{0.60}
\end{array}
\]
3.)

\[
\begin{array}{c}
\text{0.77} > 0.67
\end{array}
\]

4.)

\[
\begin{array}{c}
0.4 < 0.6
\end{array}
\]
Activity 2
Write the decimal for the shaded models. Then, compare using >, <, or =.

1.)

\[\begin{array}{c}
0.4 \\
< \\
0.5 \\
\end{array} \]

2.)

\[\begin{array}{c}
0.33 \\
> \\
0.23 \\
\end{array} \]
Write the decimal for the shaded models. Then, compare using >, <, or =.

3.)

4.)

0.8 > 0.65

0.4 > 0.39
Write the equivalent decimals for the shaded models.

1.)

\[
\begin{array}{c}
\text{Shade 0.4 and write the equivalent decimal.} \\
\text{ } \\
\text{ } \\
\end{array}
\]

\[
\begin{array}{c}
\text{ } \\
\text{ } \\
\text{ } \\
\end{array}
\]

2.) Shade 0.4 and write the equivalent decimal.

\[
\begin{array}{c}
\text{ } \\
\text{ } \\
\text{ } \\
\end{array}
\]

\[
\begin{array}{c}
\text{ } \\
\text{ } \\
\text{ } \\
\end{array}
\]
3.) Write 2 equivalent decimals and shade.

Shade and compare using >, <, or =.

4.)
Shade and compare using >, <, or =.

5.)

\[
\begin{array}{c}
0.8 \\
\end{array}
\quad \bigcirc
\quad \begin{array}{c}
0.9 \\
\end{array}
\]

6.)

\[
\begin{array}{c}
0.46 \\
\end{array}
\quad \bigcirc
\quad \begin{array}{c}
0.53 \\
\end{array}
\]
Which of the following makes the statement true?

A >
B <
C =

0.7 0.70
Write the equivalent decimals for the shaded models.

1.) Shade 0.8 and write the equivalent decimal.

\[
0.8 = 0.80
\]

2.) Shade 0.4 and write the equivalent decimal.

\[
0.4 = 0.4
\]
3.) Write 2 equivalent decimals and shade.

\[
\begin{align*}
\text{answers will vary} & \\
\end{align*}
\]

Shade and compare using >, <, or =.

4.)

\[
\begin{align*}
0.7 & < 0.87 \\
\end{align*}
\]
Shade and compare using >, <, or =.

5.)

0.8 \(<\) 0.9

6.)

0.46 \(<\) 0.53
7.)

![Comparison of shading patterns](image)

0.7 = 0.70

Which of the following makes the statement true?

A. >
B. <
C. =
0.7 \bigcirc 0.69
Module FDR
Lesson 14
Modeled Practice #2

0.46 0.4
Modeled Practice #3

0.03 ○ 0.3
0.7 > 0.69
0.46 > 0.4
0.03 < 0.3
Write the decimal for the shaded models. Then, compare using >, <, or =.

1.)

2.)
Write the decimal for the shaded models. Then, compare using >, <, or =.

3.)

[Diagram of two models with shaded parts]

___ ___
Comparing Decimals Tic Tac Toe

Directions:
1. Decide which player will play first. The other player will play second.
2. Decide who will be “X” and who will be “O.”
3. Take turns selecting a problem in the box.
4. Compare the decimals using >, <, or =.
5. Use the Fractions and Decimals Mat and dry erase marker to solve the problem.
6. If a player’s answer is correct, then mark the box with either an “X” or an “O.”
7. Continue to take turns.
8. Play the game until one player has 3 boxes in any column, row, or diagonal.

<table>
<thead>
<tr>
<th>0.7 〇 0.67</th>
<th>0.88 〇 0.9</th>
<th>0.29 〇 0.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9 〇 0.90</td>
<td>0.51 〇 0.4</td>
<td>0.56 〇 0.6</td>
</tr>
<tr>
<td>0.3 〇 0.33</td>
<td>0.7 〇 0.77</td>
<td>0.1 〇 0.10</td>
</tr>
</tbody>
</table>
Write the decimal for the shaded models. Then, compare using >, <, or =.

1.)

<table>
<thead>
<tr>
<th>Model</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left</td>
<td>0.5</td>
</tr>
<tr>
<td>Right</td>
<td>0.35</td>
</tr>
</tbody>
</table>

0.5 > 0.35

2.)

<table>
<thead>
<tr>
<th>Model</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left</td>
<td>0.39</td>
</tr>
<tr>
<td>Right</td>
<td>0.2</td>
</tr>
</tbody>
</table>

0.39 > 0.2
Write the decimal for the shaded models. Then, compare using >, <, or =.

3.)

\[
\begin{array}{c}
0.7 \\
< \\
0.74
\end{array}
\]
Comparing Decimals Tic Tac Toe

Directions:

1. Decide which player will play first. The other player will play second.
2. Decide who will be “X” and who will be “O.”
3. Take turns selecting a problem in the box.
4. Compare the decimals using >, <, or =.
5. Use the Fractions and Decimals Mat and dry erase marker to solve the problem.
6. If a player’s answer is correct, then mark the box with either an “X” or an “O.”
7. Continue to take turns.
8. Play the game until one player has 3 boxes in any column, row, or diagonal.

<table>
<thead>
<tr>
<th>0.7 > 0.67</th>
<th>0.88 < 0.9</th>
<th>0.29 > 0.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9 ≡ 0.90</td>
<td>0.51 > 0.4</td>
<td>0.56 < 0.6</td>
</tr>
<tr>
<td>0.3 < 0.33</td>
<td>0.7 > 0.77</td>
<td>0.1 ≡ 0.10</td>
</tr>
</tbody>
</table>
1.) Shade the models.

Which of the following makes the statement true?

A >
B <
C =

Shade and compare using >, <, or =.

2.)

Which of the following makes the statement true?

0.76 □ 0.82
Shade and compare using >, <, or =.

3.)

\[
0.7 \quad \bigcirc \quad 0.87
\]

4.)

\[
0.46 \quad \bigcirc \quad 0.5
\]
Write the decimal for the shaded models. Then, compare using >, <, or =.

5.)

6.)

7.) Which decimal makes the statement true?

0.26 < _______

A 0.04
B 0.20
C 0.4
D 0.25
1.) Shade the models.

\[
\begin{array}{ll}
\text{0.2} & < \text{0.5} \\
\end{array}
\]

Which of the following makes the statement true?

\[
\begin{array}{l}
\text{A} > \\
\text{B} < \\
\text{C} =
\end{array}
\]

Shade and compare using \(>\), \(<\), or \(=\).

2.)

\[
\begin{array}{ll}
\text{0.76} & < \text{0.82} \\
\end{array}
\]
Shade and compare using >, <, or =.

3.)

0.7 < 0.87

4.)

0.46 < 0.5
Write the decimal for the shaded models. Then, compare using \(>, <, \) or \(= \).

5.)

\[
\begin{align*}
\text{Model 1} & \quad 0.2 \\
\text{Model 2} & \quad 0.27
\end{align*}
\]

6.)

\[
\begin{align*}
\text{Model 1} & \quad 0.1 \\
\text{Model 2} & \quad 0.05
\end{align*}
\]

7.) Which decimal makes the statement true?

\[
0.26 < \underline{}
\]

A 0.04
B 0.20
C 0.4
D 0.25
0.9 \bigcirc \frac{76}{100}

\frac{7}{10} \bigcirc 0.84
0.94 \bigcirc \ \frac{10}{10} = \boxed{ }
0.9 \quad \gt \quad \frac{76}{100}

\frac{7}{10} \quad \lt \quad 0.84
Shade and compare using >, <, or =.

1.)

\[
\begin{array}{c}
\text{0.74} \\
\text{6/10}
\end{array}
\]

2.)

\[
\begin{array}{c}
\text{0.62} \\
\text{8/10}
\end{array}
\]
Shade and compare using $>$, $<$, or $=$.

3.)

\[
\begin{array}{c}
0.58 \quad \bigcirc \quad \frac{10}{10} = \\
\end{array}
\]
Shade and compare using >, <, or =.

1.)

\[
0.74 \quad > \quad \frac{6}{10}
\]

2.)

\[
0.62 \quad < \quad \frac{8}{10}
\]
Shade and compare using $>$, $<$, or $=$.

3.)

\[
\begin{array}{c}
0.58 \\ \text{<} \\ \frac{10}{10} = 1
\end{array}
\]
Shade and compare using >, <, or =.

1.)

0.47 ○ 0.55

2.)

0.70 ○ 0.7
Write the decimal for the shaded models. Then, compare using >, <, or =.

3.)

4.)
Shade and compare using $>$, $<$, or $=$.

5.)

\[
\begin{array}{c}
\text{0.33} \\
\end{array}
\quad \bigcirc \quad
\begin{array}{c}
\frac{3}{10}
\end{array}
\]

6.)

\[
\begin{array}{c}
\text{0.18} \\
\end{array}
\quad \bigcirc \quad
\begin{array}{c}
\frac{8}{10}
\end{array}
\]
7.) Which of the following statements is true?

A 1 < 0.66
B 0.66 > 1
C 1 = 0.66
D 1 > 0.66
Shade and compare using >, <, or =.

1.)

0.47 < 0.55

2.)

0.70 = 0.7
Write the decimal for the shaded models. Then, compare using >, <, or =.

3.)

0.5 \text{ } > \text{ } 0.27

4.)

0.2 \text{ } < \text{ } 0.25
Shade and compare using >, <, or =.

5.)

\[
\begin{array}{c}
\text{0.33} > \frac{3}{10}
\end{array}
\]

6.)

\[
\begin{array}{c}
0.18 < \frac{8}{10}
\end{array}
\]
7.) Which of the following statements is true?

A 1 < 0.66
B 0.66 > 1
C 1 = 0.66
D 1 > 0.66
least to greatest

0.17 0.07 0.7

1.0 0.8 0.39
least to greatest

0.17

0.07

0.7

0.07, 0.17, 0.7

least to greatest

1.0

0.8

0.39

0.39, 0.8, 1.0
1.) Shade and order the decimal numbers from least to greatest.

\[
\begin{align*}
0.52 & \quad 0.32 & \quad 0.4 \\
\end{align*}
\]

2.) Order the decimal numbers for the shaded models from least to greatest.

\[
\begin{align*}
& & \\
\end{align*}
\]
1.) Shade and order the decimal numbers from least to greatest.

0.52

0.32

0.4

0.32, 0.4, 0.52

2.) Order the decimal numbers for the shaded models from least to greatest.

0.2

0.4

0.05

0.05, 0.2, 0.4
Write the decimal for the shaded models. Then, compare using >, <, or =.

1.)

Shade and compare using >, <, or =.

2.)

0.72 〇 \[\frac{7}{10}\]
3.) Look at the shaded models.

Which of the following makes the statement true?

A 0.03 > 0.37
B 0.3 > 0.37
C 0.3 < 0.37
D 0.3 = 0.37
5.) Shade and order the decimal numbers from least to greatest.

0.4

0.04

0.49

6.) Order the decimal numbers for the shaded models from least to greatest.
7.) Look at the shaded models.

Which of the following shows the decimals in order from least to greatest?

A 0.21; 0.3; 0.02
B 0.3; 0.21; 0.02
C 0.02; 0.3; 0.21
D 0.02; 0.21; 0.3
Write the decimal for the shaded models. Then, compare using >, <, or =.

1.)

\[\text{Shade and compare using } >, <, \text{ or } =. \]

\[\text{0.6} \quad \equiv \quad 0.60 \]

Shade and compare using >, <, or =.

2.)

\[\text{0.72} \quad > \quad \frac{7}{10} \]
3.) Look at the shaded models.

0.56 \ < \ \frac{8}{10}

4.) Look at the shaded models.

Which of the following makes the statement true?

A 0.03 > 0.37
B 0.3 > 0.37
C 0.3 < 0.37
D 0.3 = 0.37
5.) Shade and order the decimal numbers from least to greatest.

\[
\begin{align*}
0.4 & \quad 0.04 & \quad 0.49 \\
\end{align*}
\]

\[
0.04, 0.4, 0.49
\]

6.) Order the decimal numbers for the shaded models from least to greatest.

\[
\begin{align*}
0.8 & \quad 0.3 & \quad 0.48 \\
\end{align*}
\]

\[
0.3, 0.48, 0.8
\]
7.) Look at the shaded models.

Which of the following shows the decimals in order from least to greatest?

A 0.21; 0.3; 0.02
B 0.3; 0.21; 0.02
C 0.02; 0.3; 0.21
D 0.02; 0.21; 0.3
Shade and order the decimals from least to greatest.

0.4

1.0

0.04
Shade and order the decimals from least to greatest.

0.04, 0.4, 1.0
greatest to least

0.73
0.8
0.17

greatest to least

0.09
0.7
0.46
greatest to least

0.73, 0.8, 0.17

0.8, 0.73, 0.17

greatest to least

0.09, 0.7, 0.46

0.7, 0.46, 0.09
1.) Shade and order the decimals from greatest to least.

0.6

0.26

0.62

2.) Order the decimals for the shaded models from greatest to least.
1.) Shade and order the decimals from greatest to least.

0.6, 0.26, 0.62

0.62, 0.6, 0.26

2.) Order the decimals for the shaded models from greatest to least.

0.3, 0.04, 0.2

0.3, 0.2, 0.04
1.) Look at the shaded models.

Which of the following statements is true?

A \[1 > 0.95 \]
B \[1 < 0.95 \]
C \[1 = 0.95 \]
D \[1 < 0.09 \]

2.) Shade and order the decimals from least to greatest.

0.3
0.32
0.05

\[\text{0.05} \] \[\text{0.3} \] \[\text{0.32} \]
3.) Look at the shaded models.

Which of the following shows the decimals in order from least to greatest?

A 7; 0.8; 0.82
B 0.8; 0.7; 0.82
C 0.82; 0.8; 0.7
D 0.7; 0.8; 0.82

4.) Shade and order the decimals from greatest to least.

0.3 0.13 0.43
5.) Order the decimals for the shaded models from greatest to least.

6.) Look at the shaded models.

Which of the following shows the decimals in order from greatest to least?

A 0.63; 0.6; 0.06
B 0.6; 0.63; 0.06
C 0.06; 0.6; 0.63
D 0.06; 0.63; 0.6
7.) Order the money from greatest to least.

$0.10 $0.01 $0.11
1.) Look at the shaded models.

Which of the following statements is true?

A) \(1 > 0.95\)
B) \(1 < 0.95\)
C) \(1 = 0.95\)
D) \(1 < 0.09\)

2.) Shade and order the decimals from least to greatest.

0.05, 0.3, 0.32
3.) Look at the shaded models.

Which of the following shows the decimals in order from least to greatest?

A 7; 0.8; 0.82
B 0.8; 0.7; 0.82
C 0.82; 0.8; 0.7
D 0.7; 0.8; 0.82

4.) Shade and order the decimals from greatest to least.

0.43, 0.3, 0.13
5.) Order the decimals for the shaded models from greatest to least.

\[0.3, 0.1, 0.07 \]

6.) Look at the shaded models.

Which of the following shows the decimals in order from greatest to least?

A) 0.63; 0.6; 0.06
B) 0.6; 0.63; 0.06
C) 0.06; 0.6; 0.63
D) 0.06; 0.63; 0.6
7.) Order the money from greatest to least.

$0.10 $0.01 $0.11

$0.11, $0.10, $0.01
Shade the models and solve.

1.) \(\frac{4}{10} + \frac{4}{10} = \) _______

\[\begin{array}{c}
| & | & | & | & | & | & | & | & | & | \\
| & | & | & | & | & | & | & | & | \\
\end{array} \quad + \quad \begin{array}{c}
| & | & | & | & | & | & | & | & | \\
| & | & | & | & | & | & | & | & | \\
\end{array} = \begin{array}{c}
| & | & | & | & | & | & | & | & | \\
| & | & | & | & | & | & | & | & | \\
\end{array} \\

2.) \(\frac{9}{10} - \frac{3}{10} = \) _______

\[\begin{array}{c}
| & | & | & | & | & | & | & | & | \\
\end{array} \]
Shade the models and solve.

1.) \(\frac{4}{10} + \frac{4}{10} = \frac{8}{10} \)

2.) \(\frac{9}{10} - \frac{3}{10} = \frac{6}{10} \)
Modelled Practice

\[
\begin{array}{c}
 + \\
 + \\
 = \\
\hline
\end{array}
\]

\[
\begin{array}{c}
 - \\
 - 1.4 \\
 = \\
\hline
\end{array}
\]
2.7 - 1.4 = 1.3

1.2 + 1.3 = 2.5
Read the problem, shade the models and solve.

1.) Gilbert drove 1.3 kilometer to the post office. Then he drove 1.5 kilometer to the store.

What is the total distance Gilbert drove? ________________

2.) Write a decimal for the shaded models and solve.

_____________ + ______________ = ____________

3.) Solve.

2.8 − 1.3 = ____________
Read each problem and use the models to help solve.

1.) Corin has 2.6 liters of water.

If she drinks 0.4 liters of water after soccer practice, what will be the amount of water remaining?

_______ liters

2.) Will had a piece of string 2.6 meters long. He cut off a 1.5 meter piece. How much string is left?

_______ meters
Read the problem, shade the models and solve.

1.) Gilbert drove 1.3 kilometer to the post office. Then he drove 1.5 kilometer to the store.

What is the total distance Gilbert drove? 2.8 kilometers

2.) Write a decimal for the shaded models and solve.

1.4 + 1.5 = 2.9

3.) Solve.

2.8 − 1.3 = 1.5
Read each problem and use the models to help solve.

1.) Corin has 2.6 liters of water.

If she drinks 0.4 liters of water after soccer practice, what will be the amount of water remaining?

2.2 liters

2.) Will had a piece of string 2.6 meters long. He cut off a 1.5 meter piece. How much string is left?

1.1 meters
1.) Shade and order the decimals from least to greatest.

0.5

0.45

0.63

2.) Order the decimals for the shaded models from greatest to least.
3.) Look at the shaded models.

Which of the following shows the decimals in order from greatest to least?

A 0.82; 0.07; 0.08
B 0.7; 0.8; 0.82
C 0.82; 0.8; 0.7
D 0.82; 0.7; 0.8
Read the problem and write an expression. Then shade the models and solve.

4.) The watermelon weighs 3.6 pounds. The cantaloupe weighs 1.1 pounds. How much does the watermelon and cantaloupe weigh in all?

Expression

pounds
Read the problem. Use the model to solve.

5.) James ran 4.9 meters. Lilian ran 1.5 meters less than James. How far did Lilian run?

Expression

_________ meters
1.) Shade and order the decimals from least to greatest.

0.5 0.45 0.63

0.45, 0.5, 0.63

2.) Order the decimals for the shaded models from greatest to least.

0.34 0.4 0.2

0.4, 0.34, 0.2
3.) Look at the shaded models.

Which of the following shows the decimals in order from greatest to least?

A 0.82; 0.07; 0.08
B 0.7; 0.8; 0.82
C **0.82; 0.8; 0.7**
D 0.82; 0.7; 0.8
Read the problem and write an expression. Then shade the models and solve.

4.) The watermelon weighs 3.6 pounds. The cantaloupe weighs 1.1 pounds. How much does the watermelon and cantaloupe weigh in all?

Expression \[3.6 + 1.1\]

4.7 pounds
Read the problem. Use the model to solve.

5.) James ran 4.9 meters. Lilian ran 1.5 meters less than James. How far did Lilian run?

Expression \(\quad 4.9 - 1.5 \)

3.4 meters
\[\begin{array}{c}
\hline
\text{Grid 1} \\
\hline
\text{Grid 2} \\
\hline
\text{Grid 3} \\
\hline
\hline
\end{array} \]

\[\begin{array}{c}
\hline
\text{Grid 4} \\
\hline
\text{Grid 5} \\
\hline
\text{Grid 6} \\
\hline
\hline
\end{array} \]

\[\text{Grid 1} + \text{Grid 2} = \text{Grid 3} \]

\[\text{Grid 4} + \text{Grid 5} = \text{Grid 6} \]

\[\text{Grid 1} - 0.22 = \text{Grid 6} \]
1.13 + 1.21 = 2.34

1.78 − 0.22 = 1.56
1.) There are 2.58 liters of lemonade. Shade the amount of lemonade below.

Kara poured 1.3 liters into some cups. What will be the amount of lemonade remaining? ___________ liters

2.) Shade the decimals and solve.

1.25 + 1.32 = ___________
Read each problem and solve.

1.) The container has 2.56 milliliters of water.

Diego poured out 0.25 milliliters. How much water is remaining?

__________ milliliters

2.) Steven bought a toy for $1.45 and a snack for $1.20. How much money did he spend? Shade the decimal and solve.

$__________
1.) There are 2.58 liters of lemonade. Shade the amount of lemonade below.

Kara poured 1.3 liters into some cups. What will be the amount of lemonade remaining? **1.28** liters

2.) Shade the decimals and solve.

\[
1.25 + 1.32 = 2.57
\]
Read each problem and solve.

1.) The container has 2.56 milliliters of water.

Diego poured out 0.25 milliliters. How much water is remaining?

\[
\begin{align*}
2.31 \text{ milliliters}
\end{align*}
\]

2.) Steven bought a toy for $1.45 and a snack for $1.20. How much money did he spend? Shade the decimal and solve.

\[
\begin{align*}
$2.65
\end{align*}
\]
1.) Shade and order the decimals from least to greatest.

0.7
0.67
0.60

2.) Order the decimals for the shaded models from greatest to least.
3.) Look at the shaded models.

Which of the following shows the decimals in order from greatest to least?

A 0.2; 0.30; 0.6
B 0.6; 0.30; 0.2
C 0.6; 0.2; 0.30
D 0.30; 0.6; 0.2
Read the problem and write an expression. Then shade the models and solve.

4.) The fish weighs 2.45 pounds and the small snake weighs 1.23 pounds. How much more does the fish weigh than the snake?

Expression

_________ pounds
5.) Mike walked 2.33 meters to work and 1.15 meters to the store. What is the total distance Mike walked?

Expression ________________________________

Mike walked _________ meters

6.) Mason threw a ball 5.73 meters. Nathan threw a ball 7.82 meters. Which expression can be used to find how much farther Nathan threw the ball than Mason?

A 5.73 + 7.82
B 7.8 + 5.73
C 7 – 5.73
D 7.82 – 5.73
1.) Shade and order the decimals from least to greatest.

0.7
0.67
0.60

0.60, 0.67, 0.7

2.) Order the decimals for the shaded models from greatest to least.

0.27
0.8
0.5

0.8, 0.50, 0.27
3.) Look at the shaded models.

Which of the following shows the decimals in order from greatest to least?

A 0.2; 0.30; 0.6
B 0.6; 0.30; 0.2
C 0.6; 0.2; 0.30
D 0.30; 0.6; 0.2
Read the problem and write an expression. Then shade the models and solve.

4.) The fish weighs 2.45 pounds and the small snake weighs 1.23 pounds. How much more does the fish weigh than the snake?

Expression: $2.45 - 1.23$

1.22 pounds
5.) Mike walked 2.33 meters to work and 1.15 meters to the store. What is the total distance Mike walked?

Expression 2.33 + 1.15

3.48 meters

6.) Mason threw a ball 5.73 meters. Nathan threw a ball 7.82 meters. Which expression can be used to find how much farther Nathan threw the ball than Mason?

A 5.73 + 7.82
B 7.8 + 5.73
C 7 – 5.73
D 7.82 – 5.73
The blue rain barrel collected 2.6 liters of water and the red rain barrel collected 3.3 liters of water. How much water was collected in the two rain barrels?

\[
\begin{align*}
\text{[] } + \text{[] } &= \text{[] liters}
\end{align*}
\]
Gabriel has $4.55. He spent $3.50 on his lunch. How much money does Gabriel have after buying his lunch?
The blue rain barrel collected 2.6 liters of water and the red rain barrel collected 3.3 liters of water. How much water was collected in the two rain barrels?

\[
2.6 + 3.3 = 5.9 \text{ liters}
\]
Gabriel has $4.55. He spent $3.50 on his lunch. How much money does Gabriel have after buying his lunch?

$4.55 \ - \ 3.50 = 1.05$
Read the problem and write an expression. Then, shade the models and solve.

1.) Rosa earned $2.50 for watering the flowers and $2.25 for taking out the trash. What is the total amount of money Rosa earned?

\[
\begin{align*}
\text{\$} & \quad \square \quad \text{\$} \quad = \quad \text{\$} \\
\end{align*}
\]

2.) The grass is 2.4 inches tall. Later the grass was mowed and measured 1.3 inches tall. What is the difference in the height of the grass?

\[
\begin{align*}
\square \quad \square \quad = \quad \text{________ inches}
\end{align*}
\]
Read the problem. Then write an expression to solve the problem.

1.) Caitlin saved $19.67. She donated $8.25 to a charity. How much money does she have left?

Expression __

2.) Jeremy bought 2.3 pounds of pineapple and 4.2 pounds of carrots at the farmer’s market. What is the total weight of pineapple and carrots he bought?

Expression __

3.) Kristen improved her swimming time from 8.35 seconds to 6.24 seconds. By how much time did she improve?

Expression __
Read the problem and write an expression. Then, shade the models and solve.

1.) Rosa earned $2.50 for watering the flowers and $2.25 for taking out the trash. What is the total amount of money Rosa earned?

\[
2.50 + 2.25 = 4.75
\]

2.) The grass is 2.4 inches tall. Later the grass was mowed and measured 1.3 inches tall. What is the difference in the height of the grass?

\[
2.4 - 1.3 = 1.1 \text{ inches}
\]
Read the problem. Then write an expression to solve the problem.

1.) Caitlin saved $19.67. She donated $8.25 to a charity. How much money does she have left?

Expression \[$19.67 - $8.25 \]

2.) Jeremy bought 2.3 pounds of pineapple and 4.2 pounds of carrots at the farmer’s market. What is the total weight of pineapple and carrots he bought?

Expression \[2.3 + 4.2 \]

3.) Kristen improved her swimming time from 8.35 seconds to 6.24 seconds. By how much time did she improve?

Expression \[8.35 - 6.24 \]
1.) Order the decimals for the shaded models from greatest to least.

2.) Look at the shaded models.

Which of the following shows the decimals in order from greatest to least?

A 0.6; 0.30; 0.2
B 0.2; 0.30; 0.6
C 0.6; 0.2; 0.30
D 0.6; 0.20; 0.30
Read the problem and write an expression. Then, shade the models and solve.

3.) Joe finished the race in 5.5 minutes. Aiden finished in 4.2 minutes. How much faster did Aiden run than Joe?

4.) Kim bought a hotdog for $1.25 and a bottle of water for $1.33. What is the total amount of money she spent?
Read the problem. Then write an expression to solve the problem.

5.) Claire saved $25.29. She donated $13.15 to a charity that helps rescue animals. How much money does she have left?

Expression

6.) Nate bought 2.3 pounds of apples and 3.2 pounds of cucumbers at the farmer’s market. What is the total weight of apples and cucumbers he bought?

Expression

7.) Solve problem 6 using the models below.

_________ pounds
1.) Order the decimals for the shaded models from greatest to least.

\[
\begin{align*}
0.17 & \\
0.07 & \\
0.70 & \\
\end{align*}
\]

\[
\text{0.70, 0.17, 0.07}
\]

2.) Look at the shaded models.

\[
\begin{align*}
0.6 & \\
0.2 & \\
0.30 & \\
\end{align*}
\]

Which of the following shows the decimals in order from greatest to least?

- **A** 0.6; 0.30; 0.2
- **B** 0.2; 0.30; 0.6
- **C** 0.6; 0.2; 0.30
- **D** 0.6; 0.20; 0.30
3.) Joe finished the race in 5.5 minutes. Aiden finished in 4.2 minutes. How much faster did Aiden run than Joe?

\[
\begin{align*}
5.5 &\quad - \quad 4.2 \quad = \quad 1.3 \\
\text{minutes}
\end{align*}
\]

4.) Kim bought a hotdog for $1.25 and a bottle of water for $1.33. What is the total amount of money she spent?

\[
\begin{align*}
$1.25 &\quad + \quad $1.33 \quad = \quad $2.58 \\
\end{align*}
\]
Read the problem. Then write an expression to solve the problem.

5.) Claire saved $25.29. She donated $13.15 to a charity that helps rescue animals. How much money does she have left?

Expression $\text{ } 25.29 - 13.15$

6.) Nate bought 2.3 pounds of apples and 3.2 pounds of cucumbers at the farmer’s market. What is the total weight of apples and cucumbers he bought?

Expression $\text{ } 2.3 + 3.2$

7.) Solve problem 6 using the models below.

5.5 pounds