Name:

Module: *Fraction Models (FM)*

Student Activity Sheets
Jasai and Markesha are sharing 1 chocolate bar. If they share the chocolate bar equally, how much will each of them receive?

Equal Share: ________________________________
4 friends want to share 1 chocolate bar so that each friend receives the same amount. What is the equal share that each friend will receive?

Equal Share: ________________________________
Find the equal share using fraction bars.

1.) 8 friends share 1 chocolate bar equally.

Equal share: ________________________________

2.) 4 friends share 1 sandwich equally.

Equal share: ________________________________
Find the equal share using fraction bars.

1.) 2 friends share 1 chocolate bar equally.

Equal share: __

2.) 4 friends share 1 bar of clay equally.

Equal share: __
3.) Choose the sharing situation that would have an equal share of one-eighth of a cake.

A 4 friends share 1 cake equally.
B 2 friends share 1 cake equally.
C 8 friends share 1 cake equally.
D 1 friend eats 8 cakes.
4 children share 1 apple equally. How much does each child get?

Equal share: _______________________________
On a field trip, 3 friends shared 1 sandwich equally. How much of the sandwich did each friend eat?
3 more friends are sharing 1 sandwich. How much of the sandwich does each friend receive?

Equal Share: ____________________________
Find the equal share using fraction bars.

1.) 3 monkeys share 1 banana equally.

Equal share: __

2.) 6 monkeys share 1 rope equally.

Equal share: __
Find the equal share using fraction bars.

1.) 2 kids share 1 cookie bar equally.

Equal share: ___________________________

2.) Choose the equal sharing situation that would have an equal share of one-fourth of a pizza.

A 4 friends share 1 pizza
B 2 friends share 1 pizza
C 1 friend eats 4 pizzas
D 4 friends share 1 pizza
Find the equal share using fraction bars.

3.) 6 friends share 1 cake equally.

Equal share: ________________________________

4.) 3 friends share 1 stick of gum equally.

Equal share: ________________________________
5.) Choose the equal share when 3 people share 1 cupcake equally.

A 3 cupcakes
B one-third of a cupcake
C two-thirds of a cupcake
D one-third of a sandwich
3 friends share 1 sandwich equally. How much of a sandwich does each friend get?
2 friends share 1 pizza. If the pizza is equally shared, how much does each friend receive?

Equal Share:
Find the equal share.

1.) 4 students share 1 cake equally. How much of the cake does each student get?

Equal share:

2.) 6 people share 1 pan of brownies equally. How much of the pan does each student get?

Equal share:
Find the equal share using fraction bars.

1.) 3 people share 1 strip of bacon equally.

Equal share: _____________________________

Find the equal share using the rectangle provided.

2.) 2 monkeys share 1 banana equally.

Equal share: _____________________________
Find the equal share using the rectangle provided.

3.) 4 people share 1 sandwich equally.

Choose the letter that shows the equal share.

4.) 6 friends share 1 cake equally.
Draw lines to divide and share the granola bar.

4 friends share 1 granola bar equally.

Divide and shade the rectangle to show the equal share.

Equal share: ___________________________
6 workers share 2 sandwiches equally. How much of a sandwich does each worker receive?

Equal Share: __________________________
4 friends share 2 candy bars equally. How much does each friend receive?

Equal Share: ________________________
Using the picture provided, find the equal share.

1.) 3 friends share 2 apples equally. How much does each friend receive?

Equal share:

2.) 4 friends share 3 sandwiches equally. How much does each friend receive?

Equal share:

Using the picture provided, find the equal share.

1.) 4 glasses share 1 bottle of water equally.

Equal share:
Using the picture provided, find the equal share.

2.) 6 people share 2 candy bars equally.

Equal share: __________________________

3.) 3 people share 2 pies equally.

Equal share: __________________________
Choose the equal share.

4.) 8 people share 3 vegetable pizzas equally.
Find the equal share.

4 people share 2 mini cupcakes equally.

Equal share: ____________________________
3 friends share 2 brownie bars equally. How much does each friend receive?
4 friends share 3 taffy squares equally. How much does each friend receive?

Equal Share: ___________________________
Find the equal share.

1.) 6 people share 3 sandwiches equally. How much does each person receive?

Equal share:

2.) 8 friends share 2 pizzas equally. How much does each friend get?

Equal share:
1.) 4 monkeys share 3 bananas equally.

Equal share:

2.) 4 children share 2 waffles equally.

Equal share:

Find the equal share.

3.) 3 friends share 2 pancakes equally.

4.) 8 workers share 5 sandwiches equally.

Choose the equal share.
Write the fraction for the part shaded.

1.)

2.)

3.)

4.)

Shade the model to represent the fraction.

5.) \(\frac{3}{8}\)

6.) \(\frac{2}{6}\)
The whole has _____ cubes: \[
\]
of the cubes make up the whole.

___ out of ____ are ___________ \[
\]
of the cubes are ___________

___ out of ____ are ___________ \[
\]
of the cubes are ___________

The whole has _____ shapes: \[
\]
of the shapes make up the whole.

___ out of ____ are ___________ \[
\]
of the shapes are ___________

___ out of ____ are ___________ \[
\]
of the shapes are ___________
Write a fraction for each set.

1.) John and Mariel visited a farm on a class trip. They saw 2 pigs and 6 chickens. What fraction of the animals were pigs? What fraction of the animals were chickens?

___ out of ____ are pigs: \[\square\] of the animals are pigs

___ out of ____ are chickens: \[\square\] of the animals are chickens

2.)

___ out of ____ are squares: \[\square\] of the shapes are squares

___ out of ____ are stars: \[\square\] of the shapes are stars
Write a fraction for each set.

3.)

____ out of ____ are circles: \[
\frac{\boxed{}}{\boxed{}}
\] of the shapes are circles

____ out of ____ are triangles: \[
\frac{\boxed{}}{\boxed{}}
\] of the shapes are triangles
Find the equal share.

1.) 3 friends share 2 candy bars equally.

Equal share:

Write a fraction for each set.

2.)

___ out of ____ are hamburgers: __ of the items are hamburgers

___ out of ____ are hot dogs: __ of the items are hot dogs
Write a fraction for each set.

3.)

___ out of ____ are puppies: \[
\frac{\text{___}}{\text{____}}
\]
of the animals are puppies

___ out of ____ are kittens: \[
\frac{\text{___}}{\text{____}}
\]
of the animals are kittens

4.)

___ out of ____ are apples: \[
\frac{\text{___}}{\text{____}}
\]
of the fruit are apples

___ out of ____ are bananas: \[
\frac{\text{___}}{\text{____}}
\]
of the fruit are bananas

5.) Choose the picture that shows \(\frac{3}{4}\) of the tools are hammers.

A

B

C

D
4 students want to share 3 sandwiches equally. How much of a sandwich does each student receive?
6 friends shared 5 ribbons equally. Here is an equal share:

8 friends share 5 licorice ropes. The equal share is $\frac{5}{8}$ of a licorice rope. Locate the fraction on the number line.

8 friends share 5 licorice ropes. The equal share is $\frac{5}{8}$ of a licorice rope. Locate the fraction on the number line.
Locate and label the fraction on the number line.

1.) 4 friends share 2 feet of rope equally. Here is an equal share:

![Diagram of a number line with shaded segments to represent an equal share of 2 feet shared by 4 friends.]

Equal share: ________________________

2.) 8 people share 6 sandwiches equally. Here is an equal share:

![Diagram of a number line with shaded segments to represent an equal share of 6 sandwiches shared by 8 people.]

Equal share: ________________________
Locate and label the fraction on the number line.

3.) 6 friends share 3 candy bars equally. The equal share is \(\frac{3}{6} \) of a candy bar.
Write a fraction for each set.

1.)

___ out of ___ are bees: ______ of the insects are bees

___ out of ___ are ladybugs: ______ of the insects are ladybugs

2.)

___ out of ___ are pears: ______ of the fruits are pears

___ out of ___ are strawberries: ______ of the fruits are strawberries

3.) Choose the picture that shows $\frac{5}{8}$ of the desserts are ice cream cones.

A

B

C

D
Locate and label the fraction on the number line.

4.) 3 friends share 2 taffy bars equally. Here is an equal share:

5.) 6 workers share 5 chocolate bars equally. The equal share is $\frac{5}{6}$ of a chocolate bar.
6.) 8 students share 3 sandwiches equally. Choose the number line that shows the equal share, $\frac{3}{8}$ of a sandwich.

A

B

C

D
1.) Write the fraction for the parts shaded.

2.) Shade the model to represent the fraction.

3.) \(\frac{5}{8} \) of the objects are balloons

4.) 4 friends share 3 loaves of bread. Shade and label the number line to show the equal share \(\frac{3}{4} \) of a loaf of bread.
3 friends want to share 3 sandwiches equally. Each friend wants a piece of each sandwich. What would an equal share look like?

Equal share: ________________________

How many \(\frac{1}{2} \) pieces fit in 1 whole sandwich?

How many \(\frac{1}{4} \) pieces fit in 1 whole sandwich?

What fraction of the shapes are squares?

____ out of ____ are squares

____ of the shapes are squares

What fraction on the number line equals 1 whole? Shade and fill in the blanks.

\[
\begin{array}{cccc}
0 & \frac{1}{3} & \frac{2}{3} & \frac{3}{3}
\end{array}
\]

\[
\begin{array}{cccc}
0 & \frac{1}{8} & \frac{2}{8} & \frac{3}{8}
\end{array}
\]

\[
\begin{array}{cccc}
0 & \frac{1}{8} & \frac{2}{8} & \frac{3}{8}
\end{array}
\]

\[
\begin{array}{cccc}
0 & \frac{1}{8} & \frac{2}{8} & \frac{3}{8}
\end{array}
\]

\[
\begin{array}{cccc}
0 & \frac{1}{8} & \frac{2}{8} & \frac{3}{8}
\end{array}
\]
Use the models to find the equal share.

1.) 3 friends want to share 3 different kinds of taffy equally. What would the equal share look like?

Equal share:

2.) What fraction of the shapes are shaded?

___ out of ____ are shaded

___ of the shapes are shaded

3.) What fraction on the number line equals 1 whole? Shade and fill in the blanks.

0 1 2 3 4 5 6 7 8

___ = 1 whole

8 8 8 8 8 0 8 8

Equal share:
Write a fraction for the set.

1.)

[Diagram showing forks and spoons]

_____ out of _____ are forks: \(\frac{}{} \) of the items are forks

_____ out of _____ are spoons: \(\frac{}{} \) of the items are spoons

Locate the fraction on the number line.

2.) 3 friends share 2 sandwiches equally. Here is an equal share:

[Number line diagram]

Equal share: __________________________
3.) 4 friends share 2 hot dogs equally. Shade and label the number line to show the equal share $\frac{2}{4}$ of a hot dog.

Find the equal share.

4.) 2 children share 2 cupcakes equally. What would an equal share look like?

Equal share:

Find the equal share.

Write a fraction for the set.

5.) What fraction of the shapes have corners?

____ out of ____ have corners

of the shapes have corners
Shade and fill in the boxes.

6.) What fraction on the number line equals 1 whole?

\[
\begin{array}{cccccc}
0 & 1 & 2 & 3 & 4 & 1 \\
\frac{0}{4} & \frac{1}{4} & \frac{2}{4} & \frac{3}{4} & \frac{4}{4} & \\
\end{array}
\]

\[
\square = 1 \text{ whole}
\]

7.) Choose the model that does not show 1 whole.

A

B

C

\[
\frac{3}{3} \text{ are circles}
\]

D

\[
\begin{array}{cccccc}
0 & 1 & 2 & 3 & 4 & 1 \\
\frac{0}{8} & \frac{1}{8} & \frac{2}{8} & \frac{3}{8} & \frac{4}{8} & \frac{5}{8} & \frac{6}{8} & \frac{7}{8} & \frac{8}{8} & \frac{9}{8} & \\
\end{array}
\]
Match the fraction with the fraction word.

one-third $\frac{3}{4}$

$\frac{6}{8}$ two-halves

four-eighths $\frac{5}{6}$

$\frac{1}{6}$ six-eighths

three-fourths $\frac{1}{3}$

$\frac{2}{2}$ one-sixth

five-sixths $\frac{4}{8}$

$\frac{3}{8}$ three-eighths
parts being described
parts in the whole
parts being described

circles

parts in the whole

decagons
Module FM
Lesson 9
Modeled Practice #3

parts in the whole
parts being described

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

The Meadows Center for Preventing Educational Risk—Mathematics Institute
The University of Texas at Austin ©2012 University of Texas System/Texas Education Agency
Amber says this model represents the fraction $\frac{8}{6}$. Is she correct? Why or why not?

- parts being described
- parts in the whole
Write a fraction and name it for each model.

1.) An equal share of a candy bar:

```
[Diagram of a candy bar divided into equal parts]
```

- parts being described
- parts in the whole

“_______________ of a candy bar”

2.) What fraction of the shapes are squares?

```
[Diagram of shapes with some identified as squares]
```

- parts being described
- parts in the whole

“_______________ of the shapes are squares”

3.) What is the length of the rope?

```
[Diagram of a line segment]
```

- parts being described
- parts in the whole

“the rope is _____________ of a foot long”
Find the equal share.

1.) 4 friends share 1 sandwich equally. Here is an equal share:

Equal share:

Locate the fraction on the number line.

Equal share: ______________________

2.) 4 children share 4 cupcakes equally. What would an equal share look like?

Equal share:

3.) 6 friends share 2 hot dogs equally. Shade and label the number line to show the equal share \(\frac{2}{6} \) of a hot dog.

Equal share:

\[
\text{Number Line: } 0 \quad 1
\]
Write a fraction and name it for each model.

4.) An equal share of a brownie:

- parts being described
- parts in the whole

5.) What fraction of the shapes are hearts?

- parts being described
- parts in the whole

6.) What is the length of the string?

- parts being described
- parts in the whole

"the string is _____________ of a foot long"
7.) Choose the fraction that has 4 in the numerator.

A \(\frac{2}{4} \)

B \(\frac{4}{8} \)

C \(\frac{3}{6} \)

D \(\frac{1}{8} \)
Name the numerator and denominator of each model. Then, write the fraction.

Shaded parts of the whole
numerator _____
denominator _____

What is the fraction?

Squares in the set
numerator _____
denominator _____

What is the fraction?

Shaded length on the number line
numerator _____
denominator _____

What is the fraction?

STOP
60
<table>
<thead>
<tr>
<th>Fraction</th>
<th>Area Model</th>
<th>Set Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Modeled Practice #1

Fraction: $\frac{2}{3}$
Modeled Practice #2
Fraction Area Model Number Line

The Meadows Center for Preventing Educational Risk—Mathematics Institute
The University of Texas at Austin ©2012 University of Texas System/Texas Education Agency
Draw a model to solve.

1.) Rachel and Manuel want to draw a model to show that \(\frac{2}{6} \) of the shapes are squares. What model could they use: an area model, a set model, or a number line? Draw \(\frac{2}{6} \) with the model you choose.

2.) Draw a model of the fraction.

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Area Model</th>
<th>Set Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{3}{4})</td>
<td>![Area Model Image]</td>
<td>![Set Model Image]</td>
</tr>
</tbody>
</table>

3.) Draw a model of the fraction.

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Area Model</th>
<th>Number Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{5}{6})</td>
<td>![Area Model Image]</td>
<td>![Number Line Image]</td>
</tr>
</tbody>
</table>
Write a fraction and name it for each model.

1.) An equal share of a sandwich:

- parts being described
- parts in the whole

“________________ of a sandwich”

2.) What fraction of the shapes are stars?

- parts being described
- parts in the whole

“________________ of the shapes are stars”

3.) What is the length of the rope?

- parts being described
- parts in the whole

“the rope is __________________ of a foot long”
Draw a model of the fraction.

4.) | Fraction | Area Model | Set Model |
 |---------|-----------|-----------|
 | \(\frac{1}{2}\) | ![Area Model](image) | |

5.) | Fraction | Area Model | Number Line |
 |---------|-----------|-------------|
 | \(\frac{2}{6}\) | ![Area Model](image) | ![Number Line](image) |

6.) Choose the model that does **not** show \(\frac{5}{8}\).

A	![Model A](image)
B | ![Model B](image) |
C | ![Model C](image) |
D | ![Model D](image) |
Shade each cupcake model a different color. Shade the models below to represent the equal shares.

3 friends equally share 2 cupcakes equally. How much of a cupcake does each friend receive?

Equal share: ___________________________
Lindsay and her 3 friends want to share 2 sandwiches equally. What is the equal share if they eat 2 sandwiches?

Equal Share: ___________________
What is another equal share if they eat 2 sandwiches?

Equal Share: ____________________________
Find the equal share.

1.) 6 friends equally share 3 chocolate bars, one at a time.

Equal share: ____________________________

2.) 6 friends equally share 3 chocolate bars another way.

Equal share: ____________________________
Match the equivalent fractions shown by the equal shares.

- \(\frac{1}{2}\) of a sandwich
- \(\frac{2}{4}\) of a sandwich
- \(\frac{3}{6}\) of a sandwich
- \(\frac{4}{8}\) of a sandwich
- \(\frac{5}{10}\) of a sandwich
- \(\frac{6}{12}\) of a sandwich
1.) What fraction of the shapes are circles?

\[
\begin{align*}
\text{parts being described} & \quad \text{“}_{} \quad \text{of the shapes are circles”} \\
\text{parts in the whole} &
\end{align*}
\]

2.) | Fraction | Area Model | Number Line |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{3})</td>
<td>[\text{Area Model}]</td>
<td>[\text{Number Line}]</td>
</tr>
</tbody>
</table>

Shade the models to find the equal share.

3.) 6 friends equally share 2 brownies.

Equal share:
Find the equal share.

4.) 6 friends equally share 2 brownies another way.

Equal share: _____________________________

5.) Choose the answer that shows an equivalent equal share for 6 people sharing 4 granola bars.

A

B

C

D
Label and match the equivalent fractions shown by the equal shares.

- \(\frac{1}{2} \) of a sandwich
- \(\frac{2}{4} \) of a sandwich
- \(\frac{3}{6} \) of a sandwich
- \(\frac{4}{8} \) of a sandwich
- \(\frac{5}{10} \) of a sandwich
- \(\frac{6}{12} \) of a sandwich
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Divide and shade the models to represent equivalent fractions.
Compare the paper strips to find the equivalent fractions.

1.) Tucker says Hunter got more of the candy bar because Hunter got \(\frac{4}{6} \) of a bar while Tucker only got \(\frac{2}{3} \) of a bar. Is Tucker correct?

__

Shade the shapes below to support your answer.

2.) What fraction is equivalent to \(\frac{2}{4} \)? ____________

3.) What fraction is equivalent to \(\frac{2}{6} \)? ____________
1.) Draw 2 models of the given fraction.

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Area Model</th>
<th>Set Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{2}{4}$</td>
<td>![Area Model]</td>
<td>![Set Model]</td>
</tr>
</tbody>
</table>

2.) Find the equal share when 6 friends share 4 graham crackers.

Equal share: ___________________________
3.) Find the equal share when 6 friends share 4 graham crackers, another way.

Equal share: ____________________________
Compare the paper strips to find the equivalent fractions.

4.) Adam wants to run the $\frac{1}{2}$ mile race at the track meet because it is shorter than the $\frac{2}{4}$ mile race. Eli tells him it doesn’t matter because the races are the same length. Who is correct?

Tucker says Hunter got more of the candy bar because Hunter got $\frac{4}{6}$ of a bar while Tucker only got $\frac{2}{3}$ of a bar. Is Tucker correct?

Shade the shapes below to support your answer.

5.) What fraction is equivalent to $\frac{1}{2}$? ______________

6.) What fraction is equivalent to $\frac{2}{3}$? ______________
7.) Choose the model that is not equivalent to $\frac{1}{2}$.

A

B

C

D
Compare the paper strips to find the equivalent fractions.

1.) Raquel is sharing \(\frac{1}{2} \) of a sandwich equally with her friends. How many pieces will she have if the whole sandwich is divided into 8 equal parts?

How do you know?

Shade the shapes below to support your answer.

[Shapes to be shaded]
Module FM
Lesson 13
Modeled Practice #1

The Meadows Center for Preventing Educational Risk—Mathematics Institute
The University of Texas at Austin ©2012 University of Texas System/Texas Education Agency
Label the fraction shown by the area model. Divide, shade, and label the equivalent fraction.

1.)

\[
\frac{2}{3} = \frac{6}{9}
\]

2.)

\[
\frac{1}{2} = \frac{4}{8}
\]

3.)

\[
\frac{1}{2} = \frac{2}{4}
\]
1.) Find the equal share when 4 friends equally share 2 pizzas.

Pizza 1

Pizza 2

Friend 1

Friend 2

Friend 3

Friend 4

Equal share: _____________________

2.) Find the equal share when 4 friends equally share 2 pizzas another way.

Pizza 1

Pizza 2

Friend 1

Friend 2

Friend 3

Friend 4

Equal share: _____________________
Compare paper fraction strips to find the equivalent fractions.

3.) \(\frac{2}{6} = \boxed{} \)

4.) \(\frac{4}{8} = \boxed{} \)

Label the fraction shown by the area model. Divide, shade, and label the equivalent fraction.

5.)

\[
\begin{array}{ccc}
\square & \square & \square \\
\end{array}
\]

\(= \boxed{\frac{2}{6}} \)

6.)

\[
\begin{array}{c}
\square \\
\square \\
\square \\
\end{array}
\]

\(= \boxed{\frac{1}{4}} \)
Label the fraction shown by the area model. Divide, shade, and label the equivalent fraction.

7.)

\[
\begin{array}{c}
= \\
\frac{3}{4}
\end{array}
\]

8.) Choose the model that shows a fraction equivalent to \(\frac{1}{4}\) of the pie, shown by the model below.

A

C

B

D
Use the number lines labeled in Modeled Practice to answer the following questions.

1.) The length of Gina’s pencil eraser is $\frac{3}{6}$ of a centimeter. What other fractions represent this length?

2.) Marcel ran a race that was $\frac{6}{8}$ of a mile long, but the length of the race was measured in quarters of a mile. What was the length of the race?

$$\frac{6}{8} = \frac{3}{4} \text{ of a mile}$$

3.) The average rainfall in June is $\frac{6}{8}$ of an inch. How many sixths is this?

$$\frac{1}{3} = \frac{2}{6} \text{ of an inch}$$

4.) Your hair grows more than $\frac{6}{8}$ of an inch per month. How long is this in eighths?

$$\frac{1}{4} = \frac{2}{8} \text{ of an inch}$$
Use paper strips to answer the following question.

1.) Ray measured the amount of snow to be $\frac{4}{8}$ of an inch. The weatherman says there was $\frac{1}{2}$ an inch of snow. How accurate was Ray’s measurement? ___

Shade the shapes below to support your answer.

Label the fraction shown by the area model. Divide, shade, and label the equivalent fraction.

2.)

\[
\begin{array}{ccc}
\square & \square & \square \\
\hline
\square & \square & \square \\
\end{array}
\]

\[
\begin{array}{ccc}
\square & \square & \square \\
\hline
\square & \square & \square \\
\end{array}
\]

= \frac{6}{6}

3.)

\[
\begin{array}{c}
\square & \square \\
\hline
\square & \square \\
\end{array}
\]

= \frac{8}{8}

The Meadows Center for Preventing Educational Risk—Mathematics Institute
The University of Texas at Austin ©2012 University of Texas System/Texas Education Agency
Use the number lines labeled in Modeled Practice to answer the following questions.

4.) The length of Lucca’s pencil eraser is \(\frac{2}{6} \) of a centimeter. What other fraction represents this length?

5.) Sophia’s walk to school is \(\frac{2}{4} \) of a mile long. What other fraction could measure this distance?

\[
\frac{2}{4} = \frac{\square}{2} \text{ of a mile}
\]

6.) The average rainfall in September is \(\frac{3}{4} \) of an inch. How many eighths is this?

\[
\frac{3}{4} = \frac{\square}{8} \text{ of an inch}
\]

7.) Olivia had her bangs trimmed \(\frac{4}{8} \) of an inch. How much is this in fourths?

\[
\frac{4}{8} = \frac{\square}{4} \text{ of an inch}
\]
8.) Choose the number line that shows a fraction equivalent to $\frac{1}{3}$.

A

B

C

D
Draw a model that represents the fraction.

1.) \[\frac{1}{3} \]

2.) \[\frac{1}{6} \]

3.) \[\frac{1}{4} \]

4.) \[\frac{1}{2} \]

5.) \[\frac{1}{8} \]
Yessica has 1 cake to share with friends. Will each person get more if she shares the cake equally with 2 friends or 4 friends?

Share with 2 friends: \[\frac{\square}{\square} \] of a cake

Share with 2 friends: \[\frac{\square}{\square} \] of a cake

\[\square \] of a cake is \[\square \] than \[\square \] of a cake.
Tony ran $\frac{1}{6}$ of a mile. Javier ran $\frac{1}{3}$ of a mile. Who ran the farthest?

Tony

$\frac{1}{6}$ of a mile

Javier

$\frac{1}{3}$ of a mile

$\frac{1}{6}$ of a mile is ___________ than $\frac{1}{3}$ of a mile.

_____________ ran the farthest.
Divide and shade each area model to represent the fraction shown to the right of the rectangle.

As the denominator gets _______________ the size of the parts get _______________.

Use the area models from Practice to compare the following fractions. Write < (less than), or > (greater than) in the circle.

1.) Noah says he got less of the sandwich than his sister did because he has $\frac{1}{3}$ and she has $\frac{1}{8}$. He says $\frac{1}{3}$ is less than $\frac{1}{8}$ because 3 is less than 8. Is Noah correct? ________________

\[\frac{1}{3} \bigcirc \frac{1}{8} \]

2.) Amanda has $\frac{1}{2}$ of the sandwich. Rory has $\frac{1}{8}$ of the sandwich. Does Amanda have more or less of the sandwich than Rory? ________________

\[\frac{1}{2} \bigcirc \frac{1}{8} \]

3.) Leslie grew $\frac{1}{3}$ of an inch over the summer. Hillary grew $\frac{1}{4}$ of an inch. Did Leslie grow more or less than Hillary? ________________

\[\frac{1}{3} \bigcirc \frac{1}{4} \]

4.) Levi rode his bicycle $\frac{1}{6}$ of a mile to school. Rosie rides $\frac{1}{2}$ of a mile. Who rides further to school? ________________

\[\frac{1}{6} \bigcirc \frac{1}{2} \]
Label the fraction shown by the area model. Divide, shade, and label the equivalent fraction.

1.)

\[
\begin{array}{c}
\frac{3}{4} = \frac{6}{8}
\end{array}
\]

2.) Ava ran a race that was \(\frac{2}{4}\) of a mile long, but the length of the race was measured by the half mile. What was the length of the race?

\[
\frac{2}{4} = \frac{2}{2} \text{ of a mile}
\]

3.) The length of the worm Lucy found in her back yard is \(\frac{2}{3}\) of an inch. How many sixths is this?

\[
\frac{2}{3} = \frac{2}{6} \text{ of an inch}
\]
Use the area models from Practice to compare the following fractions. Write < (less than), or > (greater than) in the circle.

4.) On Thursday, it rained $\frac{1}{6}$ of an inch. On Friday, it rained $\frac{1}{4}$ of an inch. Did it rain more or less on Thursday than on Friday? ______________

\[
\frac{1}{6} \bigcirc \frac{1}{4}
\]

5.) Grace received $\frac{1}{2}$ of the brownie. Her brother received $\frac{1}{8}$ of the brownie. Does Grace get more or less of the brownie than her brother?

\[
\frac{1}{2} \bigcirc \frac{1}{8}
\]

Write < (less than), or > (greater than) in the circle.

6.) $\frac{1}{4} \bigcirc \frac{1}{3}$

7.) $\frac{1}{8} \bigcirc \frac{1}{6}$

8.) $\frac{1}{2} \bigcirc \frac{1}{4}$
9.) Choose the letter that shows the fractions compared correctly. Remember, < means “less than” and > means “greater than”.

A \(\frac{1}{8} > \frac{1}{3} \)

B \(\frac{1}{3} > \frac{1}{2} \)

C \(\frac{1}{4} > \frac{1}{6} \)

D \(\frac{1}{2} < \frac{1}{6} \)
With a unit fraction, the _________________ the denominator, the _________________ the fractional part.
Margaret received \(\frac{2}{6} \) of a cereal bar, while Sara received \(\frac{4}{6} \) of a cereal bar. Did Margaret get more or less than Sara?

Margaret got _______ of the cereal bar than Sara.
Ana’s shoe is $\frac{5}{8}$ of a foot long. Her brother’s shoe is $\frac{2}{8}$ of a foot long. Who has the bigger shoe?

\[\begin{aligned} \text{Ana} & & \quad \frac{5}{8} & & \quad \frac{2}{8} \\ \text{Brother} & & \end{aligned} \]

\[\text{_______________ has the bigger shoe.} \]
Is \(\frac{1}{4} \) of a circle greater than or less than \(\frac{3}{4} \) of this circle?

\[\frac{1}{4} \quad \bigcirc \quad \frac{3}{4} \]
Shade the models to compare the fractions and answer the questions. Write < or > in the circle.

1.) Jackson ate \(\frac{1}{3} \) of the cake on Wednesday and \(\frac{2}{3} \) of the cake on Saturday. Did he eat more or less cake on Wednesday than on Saturday?

\[
\begin{array}{c}
\text{\(\frac{1}{3} \)} \quad \circ \quad \text{\(\frac{2}{3} \)}
\end{array}
\]

Jackson ate \[\text{__________________} \] cake on Wednesday.

2.) Andrea spent \(\frac{2}{4} \) of the $10 her mother gave her. Her brother spent \(\frac{1}{4} \) of the same amount. Did Andrea spend more or less money than her brother?

\[
\begin{array}{c}
\text{Andrea} \quad \circ \quad \text{Brother}
\end{array}
\]

Andrea spent \[\text{__________________} \] money than her brother.
Shade and label a fraction of your choice with the given denominator. Then compare fractions with your partner.

1.)

2.)

3.)
Use the number line to compare the fractions.

1.) \(\frac{4}{6} = \frac{2}{3} \) of a mile

Use the Area Model mat to compare the following fractions. Write < (less than), or > (greater than) between the fractions.

2.) Luke’s sister says he got more of the cookie than her because he ate \(\frac{1}{6} \) and she ate \(\frac{1}{2} \). She says is less than because \(\frac{1}{2} \) is less than \(\frac{1}{6} \). Is Luke’s sister correct?

\[\frac{1}{6} \bigcirc \frac{1}{2} \]

Write < (less than), or > (greater than) between the fractions.

3.) \(\frac{1}{4} \bigcirc \frac{1}{3} \)

4.) \(\frac{1}{2} \bigcirc \frac{1}{8} \)
Shade the models to compare the fractions and answer the questions. Write < or > in the circle.

5.) Ella ate \(\frac{5}{6}\) of her sandwich on Friday and \(\frac{3}{6}\) of her sandwich on Monday. Did she eat more or less of her sandwich on Friday or Monday?

Friday

Monday

\[
\frac{5}{6} \quad \bigcirc \quad \frac{3}{6}
\]

Ellie ate _______________\ of her sandwich on Friday.

6.) Miles grew \(\frac{2}{8}\) of an inch this year. His friend Parker grew \(\frac{3}{8}\) of an inch. Did Miles grow more or less than Parker?

Miles

Parker

\[
\frac{2}{8} \quad \bigcirc \quad \frac{3}{8}
\]

Miles grew _______________\ than Parker.
7.) Choose ALL of the fractions that are less than \(\frac{3}{6} \).

A \(\frac{4}{6} \)

B \(\frac{2}{6} \)

C \(\frac{1}{6} \)

D \(\frac{5}{6} \)
Shade the fractions. Then compare fractions.

1.)

\[
\frac{1}{4} \bigcirc \frac{3}{4}
\]

\[
\frac{1}{4}
\]

\[
\frac{3}{4}
\]

2.)

\[
\frac{5}{8} \bigcirc \frac{2}{8}
\]

\[
\frac{5}{8}
\]

\[
\frac{2}{8}
\]
Module FM
Lesson 17
Modeled Practice

\[\frac{2}{3} \cap \frac{2}{6} \]

\[\frac{2}{3} \]

\[\frac{2}{6} \]

\[\frac{3}{8} \cap \frac{3}{4} \]

\[\frac{3}{8} \]

\[\frac{3}{4} \]
1.) Rory told his little sister she could have \(\frac{5}{6} \) or \(\frac{5}{8} \) of his candy bar. He said she should choose \(\frac{5}{8} \) because the number is larger, and she will get a bigger share. Circle the amount she should choose.

\[
\begin{array}{c}
\frac{5}{8} \quad \bigcirc \quad \frac{5}{6}
\end{array}
\]

2.) Divide and shade the models. Write < or > in the circle.

\[
\begin{array}{c}
\frac{2}{3} \quad \bigcirc \quad \frac{2}{8}
\end{array}
\]
3.) Divide and shade the models. Write < or > in the circle.

\[
\frac{3}{6} \bigcirc \frac{3}{4}
\]

\[
\begin{array}{c}
\frac{3}{6} \\
\end{array}
\]

\[
\begin{array}{c}
\frac{3}{4} \\
\end{array}
\]
Shade the models to compare the fractions. Write < or > in the circle.

1.) Grace ate $\frac{1}{4}$ of the brownie. Her brother ate $\frac{1}{3}$ of the brownie. Did Grace get more or less of the brownie than her brother? _________

\[
\frac{1}{4} \bigcirc \frac{1}{3}
\]

2.)

\[
\frac{2}{4} \bigcirc \frac{3}{4}
\]

\[
\frac{2}{4} \quad \quad \frac{3}{4}
\]

3.)

\[
\frac{1}{2} \bigcirc \frac{1}{8}
\]

\[
\frac{1}{2} \quad \quad \frac{1}{8}
\]
Divide and shade the models. Write < or > in the circle.

4.)

\[
\frac{2}{6} \quad \bigcirc \quad \frac{2}{4}
\]

5.)

\[
\frac{4}{6} \quad \bigcirc \quad \frac{4}{8}
\]
6.) Choose the letter that does NOT show the fractions compared correctly. Remember < means “less than” and > means “greater than”.

A \[\frac{1}{8} > \frac{2}{8} \]

B \[\frac{2}{3} > \frac{2}{6} \]

C \[\frac{3}{4} > \frac{3}{8} \]

D \[\frac{5}{8} < \frac{5}{6} \]
Divide and shade the model to compare the fractions.

Ethan bought $\frac{2}{4}$ of a pound of raisins and $\frac{2}{8}$ of a pound of walnuts. Did he buy more raisins or walnuts?

![Model with shaded sections]

Ethan bought ________________ raisins than walnuts.
Module FM
Lesson 18
Modeled Practice

At the grocery store, Javier bought \(\frac{2}{4} \) of a pound of blackberries. Marco bought \(\frac{2}{8} \) of a pound of blackberries. Who bought more blackberries?

Who bought more blackberries? ________________

Javier needs to buy nails that are \(\frac{3}{8} \) of an inch long. The ones he bought are \(\frac{3}{6} \) of an inch long. Do the nails need to be shorter or longer than the ones he bought?

Shorter or longer nails? ________________
Shade the number lines to compare the fractions. Write < or > in the circle.

1.) Emma’s plant grew \(\frac{2}{3} \) of an inch, while Owen’s plant grew \(\frac{2}{4} \) of an inch. Did Emma’s plant grow more or less than Owen’s?

\[\frac{2}{3} \quad \bigcirc \quad \frac{2}{4} \]

Emma’s plant grew ________________ than Owen’s plant.

2.) Which piece of rope is longer: one that is \(\frac{5}{8} \) of a foot long, or one that is \(\frac{5}{6} \) of a foot long?

\[\frac{5}{8} \quad \bigcirc \quad \frac{5}{6} \]

The rope that is ________________ of a foot long is longer.
Circle the letter of the fraction that is greater in each pair. Write the circled letter on the line above the correct number to solve the riddle.

Question: Why was the math book sad?

1.) \(\frac{2}{4} \) \(\frac{2}{3} \)
 S O

2.) \(\frac{3}{6} \) \(\frac{3}{8} \)
 M E

3.) \(\frac{4}{8} \) \(\frac{4}{6} \)
 T P

4.) \(\frac{2}{6} \) \(\frac{2}{3} \)
 B L

5.) \(\frac{5}{6} \) \(\frac{5}{8} \)
 B A

6.) \(\frac{3}{4} \) \(\frac{3}{6} \)
 S R

7.) \(\frac{3}{8} \) \(\frac{3}{4} \)
 I E

8.) \(\frac{2}{4} \) \(\frac{2}{8} \)
 R K

Answer:
Because it had too many _______ _______ _______ _______ _______ _______ _______ !
Divide and shade the models. Write < or > in the circle.

1.)

\[
\begin{array}{c}
\frac{5}{6} \bigcirc \frac{4}{6} \\
\frac{5}{6} \\
\frac{4}{6}
\end{array}
\]

2.)

\[
\begin{array}{c}
\frac{2}{4} \bigcirc \frac{2}{8} \\
\frac{2}{4} \\
\frac{2}{8}
\end{array}
\]
Shade the number lines to compare the fractions. Write < or > in the circle.

3.)

\[
\begin{array}{c}
\text{0} \\
\text{1}
\end{array}
\]

\[
\frac{1}{3} \quad \circ \quad \frac{1}{4}
\]

4.)

\[
\begin{array}{c}
\text{0} \\
\text{1}
\end{array}
\]

\[
\frac{3}{8} \quad \circ \quad \frac{3}{6}
\]

5.) Choose the fraction that is greater than \(\frac{6}{8}\).

A \(\frac{7}{8}\)

B \(\frac{2}{8}\)

C \(\frac{4}{8}\)

D \(\frac{5}{8}\)
Shade the number lines to compare the fractions. Write < or > in the circle.

1.)

\[\frac{3}{6} \bigcirc \frac{3}{4} \]

2.)

\[\frac{2}{3} \bigcirc \frac{2}{8} \]
Cristi ordered \(\frac{1}{2} \) of a pound of turkey and \(\frac{1}{4} \) of a pound of cheese. Did she order more turkey or cheese?

\[\frac{1}{2} \bigcirc \frac{1}{4} \]

Cristi ordered more ________________.
Alan ate $\frac{3}{6}$ of a cake. Raul ate $\frac{3}{4}$ of a cake. Who ate the most cake?

\[\frac{3}{6} \circ \frac{3}{4} \]

_______________ ate the most cake.
The beetle is $\frac{7}{8}$ of an inch long, while the ant is $\frac{3}{8}$ of an inch long. Which insect is smaller?

The ____________ is smaller.
Divide and shade the models to compare the fractions. Write < or > in the circle.

1.) David bought \(\frac{1}{8} \) of a pound of almonds and \(\frac{1}{4} \) of a pound of rice. Did he buy more almonds or rice?

David bought more ________________.

2.)

3.)
Divide and shade the models. Write < or > in the circle.

1.)

\[
\frac{1}{3} \quad \bigcirc \quad \frac{1}{8}
\]

Shade the number lines to compare the fractions. Write < or > in the circle.

2.)

\[
\frac{2}{6} \quad \bigcirc \quad \frac{2}{4}
\]

3.)

\[
\frac{3}{8} \quad \bigcirc \quad \frac{3}{6}
\]
Divide and shade the models. Write < or > in the circle.

4.)

\[
\frac{5}{6} \quad \bigcirc \quad \frac{4}{6}
\]

5.)

\[
\frac{1}{6} \quad \bigcirc \quad \frac{1}{8}
\]

6.)

\[
\frac{2}{4} \quad \bigcirc \quad \frac{2}{8}
\]
7.) If the wholes are the same size, \(\frac{6}{8} \) and \(\frac{6}{8} \) ____________________.

A have different sizes of parts in the whole.
B have the same number of shaded parts.
C have the different amounts shaded.
D have different wholes.
Use a ruler to measure the lengths of the objects below.

1.)

[Image of a car]

____ inches.

2.)

[Image of a motorcycle]

____ inches.

3.)

[Image of a bicycle]

____ inches.
Shade the length of the pencil on the ruler.

What whole numbers is the length between? _____ and _____.

There are _____ equal parts between each whole number.

Each hash mark between the whole numbers represents

How many marks past 3 is the measurement? _____ marks.

The pencil is ___________ inches long.
Shade the length of the scissors on the ruler.

What whole numbers is the length between? ____ and ____.

There are ____ equal parts between each whole number.

Each part between the whole numbers represents \(\frac{\square}{\square} \).

How many parts past 5 is the measurement? ____ part.

The scissors are ____________ inches long.
Andrea measured the pen below and says it is $5 \frac{3}{4}$ inches long. Is she correct? If not, what is the length of the pen?
Measure the length of the protractor with your ruler.

Shade the length of the protractor on the ruler.

What whole numbers is the length between? _____ and _____.

There are _____ equal parts between each whole number.

Each hash mark between the whole numbers represents _____.

How many marks past 4 is the measurement? _____ part.

The protractor is ___________ inches long.
Measure the length of the compass with your ruler.

Shade the length of the compass on the ruler.

<table>
<thead>
<tr>
<th>Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
</tbody>
</table>

What whole numbers is the length between? ____ and ____.

There are ____ equal parts between each whole number.

Each hash mark between the whole numbers represents ____.

How many marks past 2 is the measurement? ____ marks.

The compass is ____________ inches long.
Record the measurements of the objects you measure with your partner. Estimate each measurement to the nearest $\frac{1}{8}$ of an inch.

<table>
<thead>
<tr>
<th>What is it?</th>
<th>How long is it?</th>
<th>How wide is it?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Shade the models to compare the fractions. Write < or > in the circle.

1.) Which is longer: a rope that is $\frac{2}{3}$ of a foot long, or one that is $\frac{2}{6}$ of a foot long?

2.)

3.)
4.) Measure the width of the sphere with your ruler.

Shade the width of the sphere on the ruler.

What whole numbers is the width between? _____ and _____.

There are _____ equal parts between each whole number.

Each hash mark between the whole numbers represents ____

How many marks past 2 is the measurement? _____ marks.

The diameter of the sphere is ___________ inches long.
5.) Measure the height of the cylinder with your ruler.

Shade the height of the cylinder on the ruler.

What whole numbers is the height between? _____ and _____.

There are ____ equal parts between each whole number.

Each part between the whole numbers represents .

How many marks past 3 is the measurement? ____ marks.

The height of the cylinder is ___________ inches long.
6.) Use your ruler and choose the letter of the rectangle that is $5 \frac{1}{2}$ inches wide.

A

B

C

D