Name:

Module: *Multiplication & Division Relationships (MDR)*

Student Activity Sheets
1-100 Chart: 2s

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>11</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>21</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>31</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
</tr>
<tr>
<td>41</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
</tr>
<tr>
<td>51</td>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>70</td>
</tr>
<tr>
<td>61</td>
<td>71</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>80</td>
</tr>
<tr>
<td>71</td>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td>86</td>
<td>87</td>
<td>88</td>
<td>89</td>
<td>90</td>
</tr>
<tr>
<td>81</td>
<td>91</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td>95</td>
<td>96</td>
<td>97</td>
<td>98</td>
<td>99</td>
<td>100</td>
</tr>
</tbody>
</table>
Use the 100s chart to show your work.

Makayla was given a sequence of numbers: 16, 20, 24, 28, 32. She knows that each number cannot be separated into groups of 3 or 5 equally. How could she prove this using the hundreds chart?
Use your hundreds chart to answer the following questions.

1.) Counting by 3s, what are the first 6 numbers? ______’, ______’, ______’, ______’, ______’, ______’

2.) How many groups of 3 is 30? ______

3.) Write an addition expression to show 9 groups of 3.

4.) What is the pattern when skip counting by 3s? ___________________
Use your 100 charts to continue the pattern.

1.) 90, 100, _____, _____
 What did you skip count by? _____

2.) 42, 44, _____, 48, _____
 What did you skip count by? _____

3.) Starting at 5, skip count by 5s, what are the first 6 numbers? _____, _____', _____', _____', _____', _____'

4.) Write an addition expression to show 4 groups of 3.

5.) How many groups of 5 is 45? _______

6.) Is the 7th group of 5 even or odd? ____________

7.) What does 8 groups of 2 equal? _______

8.) We were skip counting by 3s and stopped shading at 39. Circle the letter of the number that would be shaded next.

 A 40
 B 42
 C 36
 D 41
Equal groups
Materials needed:
1. 1 number cube
Directions:
1. Roll the number cube to find the number of equal groups.
2. Draw a picture for the equal groups.
3. Roll the number cube to find the number in each group.
4. Draw a picture for the number in each group.
5. Complete the equal-groups sentence.
6. Write a repeated addition equation.

1.) _____ groups of _____ equals ________.

repeated addition: ________________________________

2.) _____ groups of _____ equals ________.

repeated addition: ________________________________
3.) ____ groups of ____ equals ______.

repeated addition: ____________________________
Helen had 10 beads. She put them in equal groups to make bracelets. She had 2 groups of 3 and 1 group of 4. Does Helen have all the beads in equal groups?

1.) What is the question asking you to find? ________________________________

2.) Model Helen’s groups.

3.) Are these in equal-groups? ________

4.) Draw 10 beads in equal groups.

5.) ____ groups of ____ equals ________

Write the repeated addition equation for the equal-groups model or the equal-groups sentence.

6.) ________________________________

7.) ________________________________

8.) 3 groups of 8 equals 24. ________________________________
Draw an equal groups model for each of the following.

7.) 6 groups of 3 equals 18.

\[\text{ } \]

8.) \[4 + 4 + 4 + 4 + 4 = 20\]

\[\text{ } \]

9.) 4 groups of 3 = 2 groups of 6

\[\text{ } \]
1.) Skip count by 2s to continue the pattern. 112, 114, _____, 118, _____

2.) Skip count by 5s to continue the pattern. 235, _____, 245, 250, _____

Complete the equal groups sentence for the equal groups model.

3.) [Illustration of 5 groups of 5] _____ groups of ____ equals ______.

Write the repeated addition equation for the equal-groups model or the equal groups sentence.

4.) [Illustration of 5 groups of 5] ____________________________

5.) 5 groups of 9 equals 45. ____________________________

Draw an equal groups model.

6.) 4 groups of 8 equals 32.
Draw an equal groups model.

7.) \[2 + 2 + 2 + 2 + 2 + 2 + 2 = 7 + 7\]

8.) Sally has 6 buttons to sew on her sweater. Each button has 4 holes. Draw an equal groups model for Sally’s 6 buttons with 4 holes each.

9.) How many button holes are there altogether on the 6 buttons? _______
Julian sees 4 baskets with 3 apples in each basket. He writes the multiplication expression $4 \times 4 \times 4$ to find the total number of apples in all 4 baskets. Is his multiplication expression correct? Why?
Write a repeated addition equation and a multiplication equation for each equal groups model.

1.)

Model 1 = Model 2

Addition:

_________________________ = _________________________

Multiplication:

_________________________ = _________________________

2.)

Model 1 = Model 2

Addition:

_________________________ = _________________________

Multiplication:

_________________________ = _________________________
3.) [Diagram of circles with stars]

Model 1 = Model 2

Addition:

______________________________ = ________________________

Multiplication:

______________________________ = ________________________
Write a repeated addition equation for each equal-groups sentence.

1.) 3 groups of 6 equals 18. ________________________________

2.) 5 groups of 7 equals 35. ________________________________

Write a multiplication equation for each equal-groups sentence.

3.) 7 groups of 3 equals 21. ________________________________

4.) 8 groups of 4 equals 32. ________________________________

Write a multiplication equation for each repeated addition equation.

5.) \(3 + 3 + 3 + 3 + 3 = 15\) ________________________________

6.) \(6 + 6 + 6 + 6 = 24\) ________________________________
1.) Draw an equal groups model for 6 groups of 8.

2.) Draw an equal groups model for 4 + 4 + 4.

Write a repeated addition equation and a multiplication equation for each equal-groups model.

3.) ___________________________
 addition

4.) ___________________________
 multiplication

3 groups of 2 equals 6.

5.) ___________________________
 addition

6.) ___________________________
 multiplication

4 groups of 9 equals 36.

Write a multiplication equation for each repeated addition equation.

7.) 8 + 8 + 8 = 24 ___________________________

8.) 10 + 10 + 10 + 10 + 10 = 50 ___________________________
9.) Kyle separated 16 apples into baskets and told the teacher they were in equal groups. Circle the answer that shows the apples in equal groups.

A

B

C

D
4 \times 6 = \underline{______}

\underline{______} \text{ groups of } \underline{______} \text{ equals } \underline{__________}

Draw the equal-groups.

Use the number line to solve.
1) $2 \times 10 = \underline{20}$ groups of equals

2) $7 \times 4 = \underline{28}$ groups of equals
Fill in the boxes and solve the multiplication problem using the number line.

1.)

\[
\begin{array}{ccc}
13 & \times 2 & 17 \\
14 & \times 4 & \\
\end{array}
\]

\[
5 \times 6 = \underline{30}
\]

\[
\underline{\text{groups of } 6} \quad \underline{\text{equals } 30}
\]

2.)

\[
\begin{array}{ccccccc}
\times 1 & \times 3 & \times 4 & \times 5 & \times 8 \\
19 & 21 & 22 & 23 & \\
\end{array}
\]

\[
8 \times 3 = \underline{24}
\]

\[
\underline{\text{groups of } 3} \quad \underline{\text{equals } 24}
\]
3.) Jackson is asked to bag up cookies at the bakery where he works. He is told to put 3 cookies in each bag. He has been given 7 bags to fill. How many cookies will Jackson need to fill all 7 bags?

___ groups of ___ equals ______

___ × ___ = ___
1.) Write the repeated addition equation for the equal-groups model.

\[\text{\includegraphics{images/dice.png}} \]

2.) Draw the equal groups model for 2 groups of 8.

Fill in the boxes, solve the multiplication problem using the number line.

3.)

\[\begin{array}{c}
\begin{array}{c}
\text{0}
\end{array}
\end{array} \]

4.) \(9 \times 3 = \) \[\]

5.) \[\text{groups of } \] \[\text{equals } \]

Represent the problem on the number line and solve.

6.)

\[\begin{array}{c}
\begin{array}{c}
\text{0}
\end{array}
\end{array} \]

\(8 \times 2 = \) \[\]

\[\text{groups of } \] \[\text{equals } \]
7.) Represent the problem on the number line and solve.

\[3 \times 6 = ____ \]

____ groups of ____ equals ____

8.) Karen was asked to model \(2 \times 7\) on the number line. Circle the answer that shows the correct model.
Use addition or subtraction to find the unknown.

1.)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>7</td>
</tr>
</tbody>
</table>

2.)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>24</td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

3.) Write a story problem using the numbers from 1 of the strip diagrams above.
3 \times 6 = __\

___ \text{ groups of } ___\

___ \times ___ = ___}

number of parts \times value of each part = whole
Use the number line and draw a strip diagram to solve.

1.) Over the winter break, Trevor played video games for 4 hours each day. If he played video games for 3 days in a row, how many hours of video games did he play for all 3 days?

\[\underline{} \times \underline{} = \underline{} \]

3.)

Write multiplication equations for the strip diagrams and solve.

2.)

\[\underline{} \times \underline{} = \underline{} \]

Workspace

3.)

\[\underline{} \times \underline{} = \underline{} \]

Workspace
Draw a strip diagram for the given multiplication problems and solve.

4.) $5 \times 4 = ____$

5.) $6 \times 6 = ____$

6.) Write a story problem for one of the strip diagram above.

1.) Write a multiplication sentence for the equal groups sentence.

9 groups of 4 equals 36 ____________________

2.) Write a multiplication equation for the repeated addition equation.

8 + 8 + 8 + 8 + 8 + 8 + 8 = 56 ____________________

Write multiplication equations for the strip diagrams and solve.

3.)

\[
\begin{array}{c}
? \\
5 \\
\end{array}
\]

\[
\boxed{\quad \times \quad = \quad}
\]

4.)

\[
\begin{array}{c}
? \\
7 \\
\end{array}
\]

\[
\boxed{\quad \times \quad = \quad}
\]
Draw a strip diagram for the multiplication problems and solve.

5.) $4 \times 4 = \underline{_____}$

6.)
\[
\begin{array}{c}
\text{?} \\
\hline
\hline
\hline
\hline
\end{array}
\]

7.) $4 \times 8 = \underline{_____}$

8.)
\[
\begin{array}{c}
\text{?} \\
\hline
\hline
\hline
\hline
\end{array}
\]

9.) Jonah ran 3 miles every day for 1 week. After 1 week, how many miles did Jonah run in all? (Remember: 1 week = 7 days) Circle the letter of the strip diagram that represents this problem.

A 7×3

\[
\begin{array}{c}
\text{?} \\
3
\end{array}
\]

B 3×3

\[
\begin{array}{c}
\text{?} \\
3
\end{array}
\]

C 7×7

\[
\begin{array}{c}
\text{?} \\
7
\end{array}
\]

D 3×1

\[
\begin{array}{c}
\text{?} \\
3
\end{array}
\]
Equal groups:

Equal-groups sentence: ____________________________

Repeated addition equation: ______________________

Multiplication equation: __________________________

Array:

How many rows? _______

How many columns? _______

Equal-groups sentence: ____________________________

Repeated addition equation: ______________________

Multiplication equation: __________________________
1.) Use dots or circles to draw an array with 7 rows of 6.

2.) Write a multiplication equation for the array you drew.

3.) Write the equal-groups sentence for $5 \times 2 = 10$.

4.) Draw an array to model 5 groups of 2.

5.) Write a repeated addition equation for this array.

6.) What is the multiplication equation for this array?
Write a multiplication sentence for the bar models and solve.

1.)

\[
\begin{array}{cccccccc}
& & & & & & & \\
 & \\
n & & & & & & & \\
8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 \\
\end{array}
\]

number of parts \times \text{ value of each part} = \text{ whole}

2.)

\[
\begin{array}{cccccccc}
& & & & & & & \\
 & \\
n & & & & & & & \\
3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
\end{array}
\]

number of parts \times \text{ value of each part} = \text{ whole}
3.) Write a repeated addition equation for this array.

\[\text{Array} \]

4.) What is the multiplication equation for this array?

\[\text{Array} \]

5.) Use dots or circles to draw an array with 4 rows of 6.

\[\text{Array} \]

6.) Write a multiplication equation for the array you drew.

\[\text{Array} \]

7.) How do equal groups and array models show multiplication?

\[\text{Array} \]

\[\text{Array} \]

\[\text{Array} \]
8.) The box of crayons has 3 rows with 6 crayons in each row. Circle the letter of the array and multiplication equation that represents the crayon box.

A

\[
\begin{array}{c}
\bullet \bullet \bullet \\
\bullet \bullet \bullet \\
3 \times 2 = 6
\end{array}
\]

B

\[
\begin{array}{c}
\bullet \bullet \bullet \bullet \bullet \\
\bullet \bullet \bullet \bullet \bullet \\
3 \times 6 = 18
\end{array}
\]

C

\[
\begin{array}{c}
\bullet \bullet \bullet \bullet \bullet \bullet \\
6 \times 1 = 6
\end{array}
\]

D

\[
\begin{array}{c}
\bullet \bullet \bullet \\
3 \times 3 = 9
\end{array}
\]
Module MDR
Lesson 7
Engaged Practice

--- + --- + --- + --- + --- + --- + --- = ---

--- × --- = ---

--- + --- + --- = ---

--- × --- = ---
The area of the carpet is _____ square units.
Sienna is sewing a quilt. She put the quilt squares in 3 rows of 10 quilt squares. Find the area of the quilt using the tiles.

Write 2 multiplication equations that represent the array.

1.) ____ × ____ = _____

2.) ____ × ____ = _____

The area of the quilt is _____ square units.
Area of My Neighborhood

Directions:
1. Write a multiplication expression.
2. Find the area of each place in the neighborhood.
3. Record your answers here:

Gas Station: _____ × _____ Hospital: _____ × _____ Grocery Store: _____ × _____
 A = _____ A = _____ A = _____

Park: _____ × _____ School: _____ × _____ Post Office: _____ × _____
 A = _____ A = _____ A = _____
Read and solve. Look at the array below.

1.) Write a repeated addition equation for the array.

2.) Write a multiplication equation for the array.

3.) Write another multiplication equation for the array.

4.) The package of batteries has 6 rows of 2 batteries in each row. Which array and multiplication sentence best represents the batteries.

A 6 x 1

B 5 x 2

C 3 x 6

D 6 x 2
Look at the shaded area.

5.) How many columns? _________

How many in each column? _________

6.) How many rows? _________

How many in each row? _________

7.) Write 2 multiplication equations that represent the shaded area.

_____ × _____ = _____
_____ × _____ = _____

8.) Aaron is drawing a model of the kitchen floor. He shaded 8 columns of 3 tiles. Use the grid to show Aaron’s drawing of the floor.

What is the area of the kitchen floor? _________ square units
Number line:

\[0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \quad 11 \quad 12 \quad 13 \quad 14 \quad 15 \quad 16 \quad 17 \quad 18 \quad 19 \quad 20 \quad 21 \quad 22 \quad 23 \quad 24 \quad 25 \]

\[3 \times 8 = \quad \]

Array model:

Repeated addition equation:

\[\quad + \quad + \quad + \quad = \quad \]

Multiplication equation:

\[\quad \times \quad = \quad \]

Area Model:

Multiplication equation:

\[\quad \times \quad = \quad \]

The area is _____ square units.
Karina earned $7 a week for doing her chores. She did her chores for 4 weeks. How much money did Kristina earn?

Use the number line to solve.

1.) Write the repeated addition equation.

2.) Write 2 multiplication equations.

3.) Kristina earned $ _______ .
Read the problem:

\[7 \times 6 \]

Write a repeated addition equation.

Draw an array using circles.

Shade the area in the grid.

Solve the problem:

\[7 \times 6 = \boxed{} \]
1.) Use dots or circles to draw an array with 5 rows of 2.

2.) Write the repeated addition equation.

3.) Write 2 multiplication equations for the array.

4.) Look at the array below.

Which expression best represents the array?

A 3×5

B 6×2

C 6×3

D 7×3
5.) Look at the shaded area.

Write 2 multiplication equations that represent the shaded area.

_________________________ __________________________

6.) What is the shaded area? _______ square units

7.) Matthew is building a dog house. What is the area of the dog house in his drawing?

The area of the dog house is _______ square units.

8.) Which multiplication equations can be used to find the area of the dog house?

A 5 \times 5
B 5 \times 6
C 5 \times 7
D 6 \times 4
Solve each problem using the multiplication table. Circle the product for each problem.

1.) $9 \times 6 = \underline{______}$

2.) $8 \times 7 = \underline{______}$

3.) $7 \times 3 = \underline{______}$

4.) $8 \times 4 = \underline{______}$

5.) $6 \times 7 = \underline{______}$

6.) $2 \times 9 = \underline{______}$

Use the multiplication table to list the multiples.

7.) List the multiples of 7 to 70.

8.) List the multiples of 3 to 30.

9.) The Cowboys scored 6 touchdowns during the football game on Sunday. Each touchdown earned the team 7 points. What is the score after 6 touchdowns? Write the problem and use your multiplication table to solve.
Connect Four

Materials needed:
1. 2 number cubes
2. 2 different colored counters
3. Multiplication chart

Directions:
1. Roll a number cube to see who goes first.
2. **Player 1** rolls both number cubes to create a multiplication problem.
3. Place your counter on the product.
4. **Player 2** repeats the same steps.
5. The first player to get 4 in a row wins.
6. Once a square is marked, it cannot be used again. Use your knowledge of the Commutative Property of Multiplication to find a square that is not marked.
Read and solve.

1.) Write a multiplication equation using the area model below.

```
  3
```

2.) Write a multiplication equation using the bar model.

```
?  3
```

Use the words “factor” and “product” to fill in the blanks.

3.) __________________ × __________________ = __________________
Solve the multiplication problems using the multiplication table.

4.) \[\begin{array}{c} 4 \\ \times 7 \end{array} \]

5.) \[\begin{array}{c} 6 \\ \times 6 \end{array} \]

6.) \[9 \times 8 = \underline{72} \]

7.) \[3 \times 8 = \underline{24} \]

8.) \[\begin{array}{c} 7 \\ \times 7 \end{array} \]

9.) \[8 \times 8 = \underline{64} \]

Choose the best answer.

10.) During the football game on Friday, the Tigers scored 8 field goals. Each field goal is worth 3 points. How many points did the tigers earn for the field goals?

A 8 \times 3 = 24

B 8 \times 7 = 56

C 3 \times 8 = 42

D 8 \times 3 = 12
Equal Share: Breaking quantities apart so that everyone gets the same amount.

_________ shared equally with _________ students equals _________ per student with _________ leftover.
Use counters to solve.

1.) 4 friends found a treasure chest with 21 coins in it. How many coins did each friend get after the friends shared the coins equally?

 _______ shared equally with _______ friends equals _______ per friend
 with _______ leftover.

2.) 6 pirates found a lost treasure of gold. So no one would get hurt, the pirates decided to share the 28 pieces of gold equally. How many pieces of gold did each pirate get?

 _______ shared equally with _______ pirates equals _______ per pirate
 with _______ leftover.
Equal Share Charades

Materials needed:
1. Equal Share Charade Cards

Directions:
1. **Player 1** picks a charade card.
2. Using counters, **Player 1** “acts out” the problem.
3. **Player 2** watches carefully to try to figure it out what problem player 1 is solving.
4. **Player 2** records their guess in the equal groups sentence below.
5. If player 2 is correct, then the players switch roles.
6. If player 2 is incorrect, player 1 has 1 more chance to act out the problem.

1.) ______ shared equally with ______ friends equals ______ per friend with ______ leftover.

2.) ______ shared equally with ______ friends equals ______ per friend with ______ leftover.

3.) ______ shared equally with ______ friends equals ______ per friend with ______ leftover.
Use the multiplication table to solve.

1.) \(\times \) 6

\[\begin{array}{c}
6 \\
\times 8 \\
\hline
8
\end{array} \]

2.) \(\times \) 7

\[\begin{array}{c}
7 \\
\times 9 \\
\hline
9
\end{array} \]

3.) \(\times \) 4

\[\begin{array}{c}
4 \\
\times 6 \\
\hline
6
\end{array} \]

4.) Circle the factors in the multiplication sentence.

\[5 \times 7 = 35 \]

Use counters to solve.

5.) 5 students equally shared 14 pencils. How many pencils did each student get? (1 point per space)

\[\begin{array}{c}
\text{shared equally with } \text{students equals } \text{per student with } \text{leftover.}
\end{array} \]

6.) 2 rats were given 12 pieces of cheese. To the scientist’s amazement, the rats shared the cheese equally. How many pieces of cheese did each rat eat? (1 point per space)

\[\begin{array}{c}
\text{shared equally with } \text{rats equals } \text{per rat with } \text{leftover.}
\end{array} \]

Circle the best answer.

7.) 4 friends found 18 silver coins. Which way shows the friends sharing equally?

A 18 shared equally with 4 friends equals 3 per friend with 6 leftover.

B 18 shared equally with 4 friends equals 4 per friend with 2 leftover.

C 4 shared equally with 18 friends equals 4 per friend with 2 leftover.

D 18 shared equally with 4 friends equals 5 per friend with 0 leftover.
Equal Share

\[
\begin{array}{c}
24 \\
\end{array}
\]

\[\ \ \text{divided equally into} \ \ \text{groups} \]

\[\ \ \text{equals} \ \ \text{with} \ \ \text{leftover}. \]
Use counters to solve the division problem. Draw dots in the strip diagram to represent the counters.

1.) 16 divided equally into 4 groups equals _______.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>?</td>
</tr>
</tbody>
</table>

2.) Isabella made treats for her teachers as a thank you. She made 28 treats. She has 7 teachers she wants to give treats to. If she gives each teacher the same amount, how many will each teacher receive?

 28 divided equally into 7 groups equals _______.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>_____</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>?</td>
</tr>
</tbody>
</table>

3.) 24 divided equally into 6 groups equals _______.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>_____</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Is this reasonable? Look at each problem and decide if it is reasonable. Write yes or no on the line and explain why or why not. Draw a strip diagram or use counters if needed.

4.) 36 divided equally into 4 groups equals 19. ________

5.) 18 divided equally into 9 groups equals 2. ________
Use the multiplication table to solve.

1.) \(\frac{3 \times 8}{8} \)

2.) \(\frac{4 \times 7}{7} \)

3.) \(\frac{6 \times 5}{5} \)

Use counters to solve the division problem. Draw dots in the strip diagram to represent the counters.

4.) 12 divided equally into 2 groups equals ________.

5.) 9 divided equally into 3 groups equals ________.

6.) 10 divided equally into 5 groups equals ________.
Choose the most reasonable answer.

7.) Carlos has 11 stickers. He wants to give his 2 younger brothers the same amount. How many stickers should his brothers each receive?

A 22 stickers each
B 13 stickers each
C 9 stickers each
D 5 stickers each
Ms. Louis has 20 students in her class. She is planning a group project for her class and wants each group to have 4 students. How many groups will she be able to break her class into? Will there be any students leftover?

Divide 20 counters into groups of 1.

1.) How many groups do you have? _______

Divide 20 counters into groups of 2.

2.) How many groups do you have? _______
3.) How many are leftover? _______

Use #2 and #3 to complete the division sentence.

4.) _______ divided into equal groups of 2 equals _______ with _______ leftover.

Divide 20 counters into groups of 4.

5.) Draw a picture using the strip diagram above of the equal group.
6.) How many groups do you have? _______
7.) How many are leftover? _______

Use #5 to complete the division sentence.

8.) _______ divided into equal groups of _______ equals _______ with _______ leftover.
Answer the following questions using the information you gathered on the first practice sheet.

1.) Division is related to repeated __________ as multiplication is related to repeated __________.

2.) Explain how division and subtraction are related.

3.) What happens to the number of groups when more counters are in each group?

4.) How does the amount being divided compare to the answer, the number of groups made?

5.) In your own words, explain division or describe an example of division.
Use the strip diagram to complete the division sentence.

1.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>15</th>
</tr>
</thead>
</table>

_______ divided equally into 3 groups equals _______.

2.) 6 students equally shared 13 pencils.

_______ shared equally with _______ students equals _______ per student with _______ leftover.

3.) When you divide the whole into more groups, what happens to the amount in each group?
 A. The amount in each group is less.
 B. The amount in each group is more.
 C. The amount in each group doesn’t change.
 D. The amount in each group only changes the whole.

Divide 10 counters into groups of 3.
4.) Draw a picture of the equal group.

5.) How many groups do you have? _______

6.) How many are leftover? _______

7.) Division is related to repeated _____________.

The Meadows Center for Preventing Educational Risk—Mathematics Institute
The University of Texas at Austin ©2012 University of Texas System/Texas Education Agency
Module MDR
Lesson 13
Engaged Practice

\[4 \times 9 \]

\[
\text{part} =
\]

Repeated addition equation: ____________________________

Multiplication equation: ____________________________
Equal groups

Workspace
Use the strip diagram and repeated subtraction to solve the division problem.
Read and solve.

1.) Jalen has 56 baseball cards. His dad bought him plastic pages to keep his cards in so the cards would not get bent. Each page holds 8 cards. How many pages will Jalen need in order to protect all of his baseball cards?

_____ pages

Use the strip diagram to complete the equal-groups division sentence.

2.)

<table>
<thead>
<tr>
<th>6</th>
<th>6</th>
<th>6</th>
<th>6</th>
<th>6</th>
<th>6</th>
<th>6</th>
<th>6</th>
</tr>
</thead>
</table>

_______ divided into groups of _______ equals _______ equal groups.
Use the strip diagram to complete the equal-groups division sentence.

3.)

_____ divided into groups of _____ equals _____ equal groups.
Read each problem and solve.

1.) Divide 36 into groups of 8.

 ______ divided into equal groups of ______ equals ______ with ______ leftover.

Draw dots to solve the division problem.

12 divided equally into 4 groups equals ______.

Use the strip diagram and repeated subtraction to solve.

3.) Jarren had 36 bottles in his bottle collection. He decided to put them in groups of 4. How many groups of 4 was Jarren able to make?

 ______ groups
4.) 25 divided into groups of 5 equals how many groups?

5.) Use the strip diagram to complete the sentence.

5.)

\[
\begin{array}{ccccccc}
3 & 3 & 3 & 3 & 3 & 3 & 3 \\
\end{array}
\]

\[
24 \\
\]

\[
\begin{array}{cccccccc}
\text{______ divided into groups of 3 equals ________ equal groups.}
\end{array}
\]

6.)

\[
\begin{array}{cccccccc}
7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \\
\end{array}
\]

\[
63 \\
\]

\[
\begin{array}{cccccccc}
\text{______ divided into groups of 7 equals ________ equal groups.}
\end{array}
\]
Choose the correct strip diagram.

7.) 45 divided into groups of 9 equals 5 equal groups.

A

\[
\begin{array}{c|c|c|c}
\hline
& 45 & \\
\hline
15 & 15 & 15 \\
\hline
\end{array}
\]

B

\[
\begin{array}{c|c|c|c|c|c|c|c|c|c}
\hline
& 45 & \\
\hline
9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 \\
\hline
\end{array}
\]

C

\[
\begin{array}{c|c|c|c|c|c}
\hline
& 45 & \\
\hline
9 & 9 & 9 & 9 & 9 \\
\hline
\end{array}
\]

D

\[
\begin{array}{c|c|c|c|c|c|c|c}
\hline
& 45 & \\
\hline
5 & 5 & 5 & 5 & 5 \\
\hline
\end{array}
\]
Write the multiplication equation for the array.

\[\text{ ______ } \times \text{ ______ } = \text{ ______ } \]

Factor \hspace{1cm} Factor \hspace{1cm} Product

Write the division equation from the multiplication equation.

\[\text{ ______ } \div \text{ ______ } = \text{ ______ } \]

Dividend \hspace{1cm} Divisor \hspace{1cm} Quotient
Multiplication equations:
\[\times \quad \times \]
Division equations:
\[\div \quad \div \]
Use the strip diagram to complete the sentence.

1.)

\[\begin{array}{cccccccccc}
 & 72 \\
 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 \\
\end{array} \]

______ divided into groups of 9 equals _______ equal groups.

Use the strip diagram and repeated subtraction solve.

2.) Divide 56 into groups of 7.

\[\begin{array}{cccccccccc}
 & 56 \\
 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \\
\end{array} \]

_____ groups
Write the 4 equations for the number family.

\[\begin{array}{c}
48 \\
\times, \div \\
6 \\
8 \\
\end{array} \]

3.) ____________________

4.) ____________________

5.) ____________________

6.) ____________________

Complete the number family triangle from the given number sentences.

\[5 \times 7 = 35 \quad 35 \div 5 = 7\]

7.)

\[\begin{array}{c}
\quad \\
\times, \div \\
\quad \\
\quad \\
\end{array} \]

Write another multiplication equation for this fact family.

8.) _____ \times _____ = _____

Write another division equation for this fact family.

9.) _____ \div _____ = _____
There are 12 desks and 1 pencil on each desk. How many pencils are there?

______ equal groups of ______

______ × ______

There are ______ pencils.

Write your own problem using the Identity Property.

Write the corresponding multiplication equation.

Write 2 division equations in this number family.

1.) Draw an equal-groups model using dots or circles to solve 9×0.

_______ equal groups of _______

Write the repeated addition equation.

Solve $9 \times 10 = ______$

2.) Destiny has 15 folders with 1 worksheet in each folder. How many worksheets are there?

Write the multiplication sentence. _________________________________

Use the number line to solve.

Destiny has ______ worksheets.
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
Write the number family equations using 32, 8, and 4.

1.) ____ × ____ = ____
2.) ____ × ____ = ____
3.) ____ ÷ ____ = ____
4.) ____ ÷ ____ = ____

5.) Which array best represents 6 × 6?
 A
 B
 C
 D

6.) Which equation does not belong to the number family?
 A 7 × 8 = 56
 B 7 ÷ 56 = 7
 C 56 ÷ 8 = 7
 D 8 × 7 = 56

7.) ____ × 9 = 0

8.) ____ = 10 × 1

9.) Write your own problem using the Zero Property of Multiplication.

10.) Write the corresponding multiplication equation from problem 9.

11.) Write your own problem using the Identity Property of Multiplication.

12.) Write 2 division equations from the number family in number 11.

Write the multiplication equation for the area model.

_____ \times _____ = _____

The area is _____ square units.

Write the corresponding multiplication equation for the area model.

_____ \times _____ = _____

5 \times 3 = _____

8 \times 5 = _____
10 × 2 = ____

Write the corresponding multiplication equation.

_____ × _____ = _____

Write the 2 division equations.

10 × 3 = ______

7 × 10 = ______
1.) Draw an array that represents 11×2 and solve.

2.) Look at the area model below.

Write the multiplication equation to find the area of the shaded model and solve. __________________________

3.) __________________________

Write the multiplication equation to find the total amount of money and solve. __________________________
Fill in the blank for each problem.

1.) _____ = 12 × 1
2.) _____ × 48 = 0

3.) 0 × 25 = _____
4.) _____ = 99 × 1

5.) Write the multiplication and division equations using 70, 10, and 7.

 ______________________ ______________________

 ______________________ ______________________

6.) Look at the shaded area model below.

Which expression can be used to find the area of the shaded model?

 A 4 × 6 B 5 × 7 C 5 × 5 D 4 × 5

7.) Anna has 8 ten-dollar bills. How much money does Anna have? Write a multiplication equation and solve.

Anna has $ ________ .
8.) Which of the following makes the number sentence true?

\[2 \times \boxed{} = 24 \]

A 12
B 11
C 10
D 13

9.) \(\boxed{} \times 5 = 50 \)

10.) \(45 = 9 \times \boxed{} \)

11.) \(9 \times \boxed{} = 18 \)
Module MDR
Lesson 17
Modeled Practice #1

9 \times 4

(_
_ - _
_) \times _

(10 \times 4) - (1 \times 4)

_
_ - _
_ = _

SO \quad 9 \times 4 = _

_
_ \times _
_ = _

_
_ \div _
_ = _

_
_ \div _
_ = _

STOP
ESTAR
INTERVENTION

The Meadows Center for Preventing Educational Risk—Mathematics Institute
The University of Texas at Austin ©2012 University of Texas System/Texas Education Agency
9 × 6

Step 1.) Think of 9 as 10 − 1.

Step 2.) Multiply 10 and the other factor.

Step 3.) Subtract the other factor.

so 9 × 6 = ___
Fill in the blanks.

<table>
<thead>
<tr>
<th>Word Bank</th>
</tr>
</thead>
<tbody>
<tr>
<td>multiply</td>
</tr>
</tbody>
</table>

Make Ten Subtract the Factor Strategy:

Step 1.) Think of 9 as _______________.

Step 2.) _______________ 10 and the other _______________.

Step 3.) _______________ the other factor.

Use the Make Ten Subtract the Factor Strategy to solve.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.)</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>2.)</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>×</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>×</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>−</td>
<td></td>
</tr>
<tr>
<td></td>
<td>____________</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>×</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>×</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>÷</td>
<td></td>
</tr>
<tr>
<td></td>
<td>____________</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>×</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>×</td>
<td></td>
</tr>
<tr>
<td></td>
<td>÷</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td></td>
<td>÷</td>
<td></td>
</tr>
<tr>
<td></td>
<td>____________</td>
<td></td>
</tr>
</tbody>
</table>
Module MDR
Lesson 17
Practice

Solve using the Make Ten Subtract the Factor and 1 other way.

5.) Mrs. King puts her class into teams. Each team has 4 students. There are 9 different teams. How many students are in Mrs. King’s class?
Module MDR
Lesson 17
Independent Practice

Solve each problem.

1.) \(0 \times 4 = \)

2.) \(\frac{8}{5} \)

3.) \(\frac{5}{6} \times 6 \)

4.) \(2 \times 6 = \)

5.) \(9 \times 6 \)

6.) \(54 \div 6 = \)

7.) \(8 \times 9 \)

8.) \(72 \div \) = 9

9.) Draw a line to Match the step number of the Make Ten Subtract the factor.

Think of 9 as 10 – 1. ● ● Step 3

Multiply 10 and the other factor. ● ● Step 1

Subtract the other factor. ● ● Step 2
10.) Kaylee wrote that $9 \times 9 = 90$. What step did Kaylee forget to do in solving 9×9?

A None, that is the correct answer.
B She forgot to subtract the factor.
C She didn’t think of 9 as $10 - 1$.
D She didn’t multiply 9 to 10.
Module MDR
Lesson 18
Modeled Practice #1

91

6 × 8

(□ × _____) + (□ × _____) + 6 × 8 = ______

Number family: _____, _____, _____

______ × ______ = ______

______ ÷ ______ = ______

______ ÷ ______ = ______
Module MDR
Lesson 18
Modeled Practice #2

6 \times 6

(\square \times ___) + (\square \times ___)

___ + ___ = ___

___ = 6 \times 6

Number family: ___, ___, ___

___ \div ___ = ___
Step 1.) Break apart 6 into _______ and _______

Draw a line to show how to break apart 6

\[
\begin{array}{c c c c c c}
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\end{array}
\]

Step 2.) Multiply 1 and 5 by the other factor.

\[6 \times 3 = (1 \times \underline{\hspace{1cm}}) + (5 \times \underline{\hspace{1cm}})\]

Step 3.) Add the products.

\[6 \times 3 = (1 \times 3) + (5 \times 3) = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}\]
Read and solve.

1.) The basketballs were organized on shelves in the gym. Each shelf held 4 balls. There were 6 total shelves. How many basketballs were in the gym?

\[\square \times \square = \square \]

\[(\square \times \square) + (\square \times \square) = \square \]

\[\square \div \square = \square \]

2.) Jill was excited for vacation. She packed 6 boxes of towels for her family. Each box had 7 towels. How many towels did she pack?

\[\square \times \square = \square \]

\[(\square \times \square) + (\square \times \square) = \square \]

\[\square \div \square = \square \]
3.) Match the fact with the strategy or property by drawing a line.

<table>
<thead>
<tr>
<th>Fact</th>
<th>Strategy/Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 × 0</td>
<td>Skip count by 2s</td>
</tr>
<tr>
<td>12 × 1</td>
<td>Identity Property</td>
</tr>
<tr>
<td>7 × 9</td>
<td>Make Ten Subtract the Factor</td>
</tr>
<tr>
<td>7 × 2</td>
<td>Skip count by 5s</td>
</tr>
<tr>
<td>10 × 8</td>
<td>Break apart 6</td>
</tr>
<tr>
<td>4 × 5</td>
<td>Zero Property</td>
</tr>
<tr>
<td>6 × 3</td>
<td>Skip count by 10s</td>
</tr>
</tbody>
</table>
Solve each problem.

1.) \(9 \times 9\)

2.) \(3 \times 10\)

3.) \(5 \times 6 = \)____

4.) ____ = \(2 \times 7\)

5.) \(6 \times 8\)
 \((\square \times 8) + (\square \times 8)\)
 ____ + ____

6.) \(3 \times 6\)
 \((\square \times \square) + (\square \times \square)\)
 ____ + ____

7.) \(6 \times 4\)
 \((\square \times \square) + (\square \times \square)\)
 ____ + ____

8.) \(7 \times 6\)
 \((\square \times 7) + (\square \times 7)\)
 ____ + ____

9.) Marcus sold 6 pies at the fundraiser. Each pie costs $6. How much money did Marcus make?

 A $30 B $32 C $12 D $36
Number family: _____, _____, _____

_____ ÷ _____ = _____

_____ + _____

_____ = 4 × 7
Modeled Practice #2

\[\boxed{\square} \]

\[\begin{array}{cccc}
\bullet & \bullet & \bullet & \bullet \\
\end{array} \]

\[\begin{array}{c}
\square \times \square \\
\end{array} \]

\[\begin{array}{cccc}
\square + \square + \square + \square \\
\boxed{\square} + \boxed{\square} \\
\boxed{\square} = 8 \times 7 \\
\end{array} \]

Number family: \[\boxed{\square}, \boxed{\square}, \boxed{\square}\]

\[\boxed{\square} \div \boxed{\square} = \boxed{\square} \]
4s

Step 1.) Double the other factor.

Circle the other factor. \(4 \times 8\)

Step 2.) Double it again.

Write the doubles fact. ___ + ___

What is the sum? ___

So \(4 \times 8\) ___

8s

Step 1.) Double the other factor.

Circle the other factor. \(8 \times 3\)

Step 2.) Double it again.

Write the doubles facts. ___ + ___ + ___

Write the doubles fact. ___ + ___

Step 3.) Double it last time.

What is the sum? ___

So \(8 \times 3\) ___
Read each problem and solve.

1.) Matthew has 4 friends and wants to give each friend 3 notebooks. How many notebooks does Matthew need in all?

\[4 \times ____ \]

____ + ____

____ = 4 \times ____

2.) New art materials come in 8 boxes of 8 brushes. How many brushes will the art class have?

\[____ \times 8 \]

\[____ + ____ + ____ \]

\[____ + ____ \]

____ = 8 \times ____

3.) \[4 \times 8 \]

____ + ____

\[4 \times 8 = ____ \]

4.) \[8 \times 7 \]

\[+ + + \]

\[+ + + \]

\[____ + ____ \]

____ = 8 \times 7
Module MDR
Lesson 19
Independent Practice

Solve each problem.

1.) \(____ = 6 \times 3\)

2.) \(9 \times 4 = ____\)

3.) \(\frac{5}{2} \times \)

4.) \(12 \times 1 = ____\)

5.) \(8 \times 3 = \)

6.) \(7 \times 4 = \)

7.) \(4 \times 3 = \)

8.) \(8 \times 8 = \)

9.) Circle the letter that shows Courtney correctly solved \(4 \times 8\).

A \(4 \times 8 = 12\)

B \(8 + 8 = 16\) so \(4 \times 8 = 16\)

C \(16 + 16 = 32\) so \(4 \times 8 = 32\)

D \(4 + 4 + 4 + 4 = 16\) so \(4 \times 8 = 16\)
Modeled Practice #1

\[\text{Number family: } _____, _____, _____ \]

\[_____ \div _____ = _____ \]

\[_____ \div _____ = _____ \]
Modeled Practice #2

Number family: ______, ______, ______

STOP

The Meadows Center for Preventing Educational Risk—Mathematics Institute
The University of Texas at Austin ©2012 University of Texas System/Texas Education Agency
7s

Step 1.) Break apart 7 into 5 and 2.

Step 2.) Multiply 5 and 2 by the other factor.

Step 3.) Add the products.

7 \times 4

\(\square \times \square + \square \times \square \)

\square + \square = 7 \times 4

6 \times 7

\(\square \times \square + \square \times \square \)

\square + \square = 6 \times 7
Read each problem and solve.

1.) Tomas has 7 jars. Each jar contains 7 insects. How many insects are there?

\[
7 \times \underline{\text{____}} \\
(\underline{\text{____}} \times \underline{\text{____}}) + (\underline{\text{____}} \times \underline{\text{____}}) \\
\underline{\text{____}} + \underline{\text{____}} \\
\underline{\text{____}} \text{ insects}
\]

2.) Sofia earns $8 a day for pet sitting. She worked a total of 7 days. How much money did Sophia earn?

\[
\underline{\text{____}} \times 7 \\
(\underline{\text{____}} \times \underline{\text{____}}) + (\underline{\text{____}} \times \underline{\text{____}}) \\
\underline{\text{____}} + \underline{\text{____}} \\
$ \underline{\text{____}}
\]
1.) ____ = 10 × 4

2.) \(\frac{6}{6} \)

3.) \(\frac{9}{6} \)

4.) \(8 \times 7 = \square \) + + + + + \\

5.) \(4 \times 8 = \square \) + + \\

6.) \(3 \times 7 \)

(\(\square \times _ \)) + (\(\square \times _ \))

___ + ___

___ = 3 × 7
7.) Joshua sold 7 of his baseball cards for $4 each. How much money did Joshua get for his baseball cards?

A $35 B $11 C $28 D $21

8.) \(4 \times 7\)

\[(\square \times ____) + (\square \times ______)\]

___ + ___

___ = 4 \times 7

9.) \(7 \times 7\)

\[(\square \times ____) + (\square \times ______)\]

___ + ___

___ = 7 \times 7