ESTAR
 INTERVENTION

Tier 2 Mathematics Intervention

Module: Multiplication \& Division of Whole Numbers (MDWN)

Teacher Display Masters

The Meadows Center

FOR PREVENTING EDUCATIONAL RISK THE UNIVERSITY OF TEXAS AT AUSTIN COLLEGE OF EDUCATION

Mathematics Institute for Learning Disabilities and Difficulties

www.meadowscenter.org

O2012 University of Texas System/Texas Education Agency

These materials are copyrighted © by and are the property of the Texas Education Agency and the University of Texas System and may not be reproduced or distributed without their written permission, except by Texas public school educators under the following conditions:

1. Any portion reproduced or distributed is used exclusively for nonprofit educational purposes in Texas.
2. No monetary charge is made for the reproduced materials, any document containing them, or any activity at which they are distributed; however, a reasonable charge to cover only the cost of reproduction and distribution may be charged.
3. No modifications or changes are made to the materials by anyone without the express written permission of the University of Texas System and the Texas Education Agency.

To obtain a license to reprint large quantities, or to use the materials in a manner not specified above, contact copyrights@tea.state.tx.us

\times	1	2	3	4	5	6	7	8	9	10
1										
2										
3										
4										
5										
6										
7										
8										
9										
10										

Break Apart Strategy
 6×7

Step 1.) Break apart the factor.

Step 2.) Multiply by the other factor. __ $\times 7+\ldots \times 7$

Step 3.) Add the products.

Break Apart Strategy 6×7

Step 1.) Break apart the factor. \qquad

Step 2.) Multiply by the other factor. $6 \times \ldots+6 \times$ \qquad

Step 3.) Add the products. \qquad

Make 10 Subtract the Factor Strategy
 9×4

Step 1.) Think of 9 as 10-1. \qquad

Step 2.) Multiply the other factor by 10.

Step 3.) Subtract the other factor. \qquad

Doubling Strategy for 4s 9×4

Step 1.) Think of 4 as 2×2.

Step 2.) Double the factor.

Step 3.) Double the product.
$]_{-}^{-}{ }^{-}=$

Break Apart Strategy
 6×7

Step 1.) Break apart the factor.

Step 2.) Multiply by the other factor. $\quad 1 \times 7+\ldots 5 \times 7$

Step 3.) Add the products. $\underline{7}+\underline{35}=\underline{42}$

Break Apart Strategy
 6×7

Step 1.) Break apart the factor.
$6 \times \underline{2}+\underline{5}$

Step 2.) Multiply by the other factor. $6 \times \underline{2}+6 \times \underline{5}$

Step 3.) Add the products.
$\underline{12}+\underline{30}=\underline{42}$

Make 10 Subtract the Factor Strategy
 9×4

Step 1.) Think of 9 as 10-1.
$9 \times 4=\underline{10}+\underline{4}$

Step 2.) Multiply the other factor by

$$
10 \times 4=40
$$

Step 3.) Subtract the other factor.

$$
40-4=36
$$

Doubling Strategy for 4 s 9×4

Step 1.) Think of 4 as 2×2.
$9 \times \underline{2} \times \underline{2}$

Step 2.) Double the factor.
$\underline{9} \times 2=\underline{18}$

Step 3.) Double the product.
$\underline{18}-\underline{2}=\underline{36}$

Use the game board above to answer the following questions.
1.) If Josie had factor cards 3,4 , and 9 in her hand, which product square should she cover with her counter? Why?
2.) Micah was trying to cover the product 54 with his counter. He had already drawn a factor of 6. What other cards does he need to draw to be able to cover 54?
3.) Josie drew the factor cards 5, 7, and 6. List the product numbers she could cover that are not already covered.

1	2	3	4	5	6
7	8	9	10	12	14
15	16	18	20	21	24
25	27	28	30	32	35
36	40	42	45	48	49
54	56	63	64	72	81

Use the game board above to answer the following questions.
1.) If Josie had factor cards 3,4 , and 9 in her hand, which product square should she cover with her counter? Why?

12 to block Micah and get 3 in a row
2.) Micah was trying to cover the product 54 with his counter. He had already drawn a factor of 6 . What other cards does he need to draw to be able to cover 54?
9
3.) Josie drew the factor cards 5, 7, and 6. List the product numbers she could cover that are not already covered.

30, 42

Tina and Alfredo are playing the same game Josie and Micah played. Answer the questions about their game.
1.) Tina has factor cards 1,3 , and 8 in her hand. List 2 multiplication equations that she can create with these 3 cards.
2.) Alfredo has 2 factor cards that are the same number. List 3 possible products he could cover. (Example: He could cover 1 because he has 1×1)
3.) Tina covers product square 7 with her counter and says, " 3×4 is 7 ." Is she correct? Why or why not?

If not, what strategy do you suggest she uses to correct herself?
4.) Alfredo has factor cards 3 and 8 . He put his counter on 24. Is he correct?

Use a strategy to show what he might have done to solve.

Tina and Alfredo are playing the same game Josie and Micah played. Answer the questions about their game.
1.) Tina has factor cards 1,3 , and 8 in her hand. List 2 multiplication equations that she can create with these 3 cards.

$$
\begin{array}{ll}
1 \times 3=3 & 3 \times 1=3 \\
1 \times 8=8 & 8 \times 1=8 \\
3 \times 8=24 & 8 \times 3=24
\end{array}
$$

2.) Alfredo has 2 factor cards that are the same number. List 3 possible products he could cover. (Example: He could cover 1 because he has 1×1.)
$2 \times 2=4$
$5 \times 5=25$
$8 \times 8=64$
$3 \times 3=9$
$6 \times 6=36$
$9 \times 9=81$
$4 \times 4=16$
$7 \times 7=49$
3.) Tina covers product square 7 with her counter and says, " 3×4 is 7 ." Is she correct? Why or why not?

$$
\text { no, } \begin{aligned}
3+4 & =7 \\
3 \times 4 & =12
\end{aligned}
$$

If not, what strategy do you suggest she uses to correct herself? Doubling Strategy
$3 \times 2=6$
$3 \times 2=6$
$6 \times 2=12$

Module MDWN
 Lesson 1 Independent Practice Key

4.) Alfredo has factor cards 3 and 8 . He put his counter on 24 . Is he correct? Yes

Use a strategy to show what he might have done to solve.
3×8
$3 \times 2=6$
6×4
$6 \times 2 \times 2$
$6 \times 2=12$
$12 \times 2=24$

Multiply by Powers of 10 .
Use a marker or highlighter for the Powers of 10.
1.) $60 \times 10=$ \qquad
2.) $100 \times 7=$ \qquad
3.) $60 \times 100=$ \qquad
4.) $1,000 \times 7=$ \qquad
5.) $60 \times 1,000=$ \qquad
6.) There are 100 centimeters in every meter. How many centimeters are in 12 meters?

What is the question asking you to find?

Multiply by Powers of 10 .
Use a marker or highlighter for the Powers of 10.
1.) $60 \times 10=600^{*}$
2.) $100 \times 7=$
3.) $60 \times 100=$
4.) $1,000 \times 7=\underline{7,000}$
5.) $60 \times 1,000=\underline{60,000}$

* The larger Os on the answer key represent the numerals to be highlighted.
6.) There are 100 centimeters in every meter. How many centimeters are in 12 meters?
12×100
1,200 centimeters

What is the question asking you to find?
The number of centimeters in 12 meters.

Multiply by Powers of 10 .
Use a marker or highlighter for the Powers of 10.
1.) $5 \times 1,000=$ \qquad
3.) $10 \times 80=$ \qquad
5.) $90 \times 10=$ \qquad
7.) $1,000 \times 40=$ \qquad
2.) $100 \times 30=$ \qquad
4.) $20 \times 1,000=$ \qquad
6.) $15 \times 100=$ \qquad
8.) $100 \times 700=$ \qquad

Choose the best answer.
9.) There are 100 centimeters in every meter. How many centimeters are in 12 meter?
A 300 grams
C 30 grams
B 3,000 grams
D 1,003 grams
10.) The city of Chicago is the third most populated city in the United States with approximately 3 million people. The United States population is 100 times more populous. About how many people live in the United States?
A 30 million
C 3,000 million
B 300 million
D 1 million

Solve the multiplication problem using two different strategies.
11.) $6 \times 4=$ \qquad 12.) $6 \times 4=$ \qquad

Module MDWN
 Lesson 2
 Independent Practice Key

Multiply by Powers of 10 .
Use a marker or highlighter for the Powers of 10.
1.) $5 \times 1,000=$ \qquad 5.000*
3.) $10 \times 80=$
\qquad
5.) $90 \times 10=$ \qquad
7.) $1,000 \times 40=\underline{40,000}$
2.) $100 \times 30=$

Choose the best answer.
9.) There are 100 centimeters in every meter. How many centimeters are in 12 meter?
A 300 grams
C 30 grams
(B) 3,000 grams
D 1,003 grams
10.) The city of Chicago is the third most populated city in the United States with approximately 3 million people. The United States population is 100 times more populous. About how many people live in the United States?
A 30 million
C 3,000 million
(B) 300 million
D 1 million

Module MDWN
 Lesson 2 Independent Practice Key

Solve the multiplication problem using two different strategies.
11.) $6 \times 4=\underline{24}$

$$
\begin{gathered}
6 \times 2 \times 2 \\
6 \times 2=12 \\
12 \times 2=24
\end{gathered}
$$

12.) $6 \times 4=\underline{24}$
$(1+5) \times 4)$
$(1 \times 4)+(5 \times 4)$
$4+20=24$

Use a strategy to solve.
1.) Mrs. Hern has 30 fourth grade math students. She bought each student a pencil-top eraser, 2 folders, and 5 colored pens. Each eraser costs \$0.20. How much did she spend on 30 erasers?

Solve the multiplication problem.

4.)
$\times 3=$ \qquad

Use a strategy to solve.
1.) Mrs. Hern has(30)fourth grade math students. She ordered each student a pencil-top eraser, 2 folders, and 5 colored pens. Each eraser costs $\$ 0.20$. How much did she spend on 30 erasers?

$$
\begin{aligned}
& 20 \times 130=600 \\
& 600 \text { cents }=\$ 6.00
\end{aligned}
$$

Solve the multiplication problem.

3.) $9 \times 6=54$

$\underline{54} \times \underline{100}$

$$
90 \times 60=5,400
$$

4.) $8 \times 3=\underline{24}$

1.) Jordan Elementary went on a fourth grade field trip. There were 20 chaperones on the trip. Each chaperone was in charge of 10 students. How many students went on the fourth grade field trip?
A 200 students
C 2,000 students
B 20,000 students
D 130 students

Use a strategy to solve.
2.) $8 \times 7=$ \qquad

Solve the multiplication problem.

Solve the multiplication problem.

5.) $4 \times 9=$

1.) Jordan Elementary went on a fourth grade field trip. There were 20 chaperones on the trip. Each chaperone was in charge of 10 students. How many students went on the fourth grade field trip?
(A) 200 students
C 2,000 students
B 20,000 students
D 130 students

Use a strategy to solve.
2.) $8 \times 7=\underline{56}$
$7 \times 2=14$
$8 \times(2+5)$
$14 \times 2=28$
Or
$(8 \times 2)+(8 \times 5)$
$16+40=56$

Solve the multiplication problem.

Solve the multiplication problem.

5.) $4 \times 9=\underline{36}$

Compatible numbers as a tool to estimate.

Compatible numbers as a tool to estimate.
52×68

1.) The whole school went on a trip to the aquarium. There were 17 buses, about 42 students, and 3 teachers on each bus. Estimate how many students went on the trip to the aquarium.

Find an estimated answer for the multiplication problems below. Then, use a calculator to find the exact answer. Circle "Yes" or "No" if your estimation is reasonable.
2.)

18×26

$18 \times 26=$ \qquad

Reasonable? Yes No
3.) 61×94

$61 \times 94=$ \qquad

Reasonable? Yes No
1.) The whole school went on a trip to the aquarium. There were 17 buses, about (42)students, and 3 teachers on each bus. Estimate how many students went on the trip to the aquarium.
17×42
$20 \times 40=800$

Find an estimated answer for the multiplication problems below. Then, use a calculator to find the exact answer. Circle "Yes" or "No" if your estimation is reasonable.
2.)

$18 \times 26=468$
Reasonable? Yes No
3.) 61×94

$61 \times 94=5,734$
Reasonable? Yes No

Solve using a strategy.
1.) $4 \times 8=$ \qquad 2.) $40 \times 70=$ \qquad

Use rounding or compatible numbers to estimate each product.

4.) 72×94

5.) 24×42

6.) 15×18

7.) Yaneth baked 36 cookies for each homeroom class at Bluebonnet Elementary School. Bluebonnet Elementary School has 9 homerooms. About how many cookies did Yaneth bake?

A $45 \times 10=450$ cookies
B $30 \times 10=300$ cookies
C $40 \times 20=800$ cookies
D $36 \times 10=360$ cookies

Solve using a strategy.
1.) $4 \times 8=\underline{32}$

$$
\begin{aligned}
& 2 \times 8=16 \\
& 2 \times 16=32
\end{aligned}
$$

2.) $40 \times 70=\underline{2,800}$
$4 \times 10+7 \times 10$
$28+100=2,800$

Use rounding or compatible numbers to estimate each product.

4.) 72×94

or $\underline{70} \times \underline{90}=\underline{6,300}$
6.) 15×18

or $\underline{25} \times \underline{40}=\underline{1,000}$
7.) Yaneth baked 36 cookies for each homeroom class at Bluebonnet Elementary School. Bluebonnet Elementary School has 9 homerooms. About how many cookies did Yaneth bake?

A $45 \times 10=450$ cookies
B $30 \times 10=300$ cookies
C $40 \times 20=800$ cookies
(D) $36 \times 10=360$ cookies

\cdots

$\bigcirc \bigcirc$

$$
\begin{array}{ll}
& \triangleleft \triangleleft \triangleleft \triangleleft \\
& \triangleleft \triangleleft \triangleleft \triangleleft \\
\times & \triangleleft \triangleleft \triangleleft \triangleleft
\end{array}
$$

$$
\triangleleft \triangleleft \triangleleft \triangleleft
$$

$$
\begin{aligned}
& \triangleleft \triangleleft \triangleleft \triangleleft \\
& \triangleleft \triangleleft \triangleleft \triangleleft
\end{aligned}
$$

Solve using the partial-products method.
1.) The grocery store has a peanut butter display. The display is organized in 6 rows with 15 jars of peanut butter on each row. How many total jars of peanut butter are on display?

$+\ldots=$ \qquad
$6 \times 15=$ \qquad
2.)

$5 \times 17=$ \qquad
3.)

$$
ـ^{\times} \times \ldots
$$

$$
\left.\begin{array}{llllllllllllllllllllll}
X & X & X & X & X & X & X & X & X & X & X & X & X & X & X & X & X & X & X & X \\
X & X \\
X & X \\
X & X \\
X & X
\end{array}\right]
$$

$23 \times 4=$ \qquad

Student "A," solve for the tens.
Student "B," solve for the ones.
Work together to find the sum.
Then, switch roles.
1.) $18 \times 5=$ \qquad

2.) $22 \times 6=$ \qquad

"B"

\qquad

Solve using the partial-products method.
1.) The grocery store has a peanut butter display. The display is organized in 6) Ow with (15) jars of peanut butter on each row. How many total jars of peanut butter are on display?

$$
\begin{aligned}
& \underline{10} \times \underline{6}=60 \\
& 5 \times 6=30 \\
& \underline{60}+\underline{30}=\underline{90} \\
& 6 \times 15=\underline{90}
\end{aligned}
$$

2.)

$$
5 \times 17=85
$$

$$
\begin{aligned}
\underline{5} \times \underline{10}= & \frac{50}{\frac{50}{50}}+\frac{35}{5}=\frac{85}{17}=85
\end{aligned}
$$

3.)

$$
23 \times 4=992
$$

$$
\begin{aligned}
& \frac{80}{23} \times 4=\frac{92}{92}
\end{aligned}
$$

Student "A," solve for the tens.
Student "B," solve for the ones.
Work together to find the sum.
Then, switch roles.
1.) $18 \times 5=$ \square 90

"A"

$$
10 \times 5=50
$$

"B"
$\underline{8} \times \underline{5}=\underline{40}$

$$
50+40=90
$$

2.) $22 \times 6=\underline{132}$

> "A"

$$
20 \times 6=120
$$

$$
2 \times 66=12
$$

$$
\underline{120}+\underline{12}=132
$$

Use rounding or compatible numbers to estimate each product.
1.) 32×61

$$
]^{\times} \times{ }^{\circ}=
$$

2.) 79×11

\qquad

Use the partial-products method to solve.
3.)

$$
\begin{aligned}
& 18 \times 4=
\end{aligned}
$$

$$
\begin{aligned}
& \int^{\times}=\ldots \quad{ }^{\times}= \\
& \sim_{C}^{+}{ }^{+}
\end{aligned}
$$

4.)

Choose the correct answer.
5.) Sammy has a collection of wizard stickers. He has 9 full pages of stickers. Each page has 52 stickers on it. How should Sammy split the factor 52 to find the partial products in order to find the total number of stickers?

A 50×2 and 50×9
B 52×10 and 52×9
C 50×9 and 2×9
D 9×10 and 9×2

Use rounding or compatible numbers to estimate each product.
1.) 32×61

2.) 79×11

Use the partial-products method to solve.
3.)
4.)

$$
\underline{23} \times \underline{3}=69
$$

$$
\underline{20} \times \underline{3}=\underline{60} \quad 3 \times 3=9
$$

$$
60+9=69
$$

$$
\begin{aligned}
& 18 \times 4=\underline{72}
\end{aligned}
$$

$$
\begin{aligned}
& x \times X \times X X X X X X X X X X X X X X \\
& \underline{10} \times \underline{4}=40 \quad 8 \times \underline{4}=\underline{32} \\
& \underline{40}+\underline{32}=\underline{72}
\end{aligned}
$$

Module MDWN
 Lesson 5
 Independent Practice Key

Choose the correct answer.
5.) Sammy has a collection of wizard stickers. He has 9 full pages of stickers. Each page has 52 stickers on it. How should Sammy split the factor 52 to find the partial products in order to find the total number of stickers?

A 50×2 and 50×9
B 52×10 and 52×9
C 50×9 and 2×9
D 9×10 and 9×2

Draw an array for 4×7.

Draw an area model for 4×7.

Draw an array for 4×7.

Draw an area model for 4×7.

$$
\begin{aligned}
& 4 \times 2+2+5 \\
& \frac{4}{4} \times 2=\frac{2}{4}=\frac{5}{20} \\
& \frac{8}{4}+20=28 \\
& 4 \times 7=28
\end{aligned}
$$

24×8

Estimate:

Partial-Products Method:

$$
\begin{aligned}
& 24 \times 8 \\
& \sim^{\times} \times \ldots \quad+\quad \times \ldots \\
& \sim^{+}+ \\
& 24 \times 8=
\end{aligned}
$$

The ladies' quilting club made a quilt for the auction that sold for $\$ 300$. The quilt was 27 squares long and 6 squares wide. How many squares were on the quilt altogether?

Estimate:

Partial-Products Method:
27×6

$24 \times 8=$ \qquad
24×8

Estimate:

$$
\begin{array}{ccc}
24 & \times & 8 \\
\downarrow & & \downarrow \\
25 & \times & 8 \\
\hline
\end{array}
$$

Partial-Products Method:

$$
\frac{20}{2 \times \frac{8}{24} \times \frac{160}{160}+\frac{4}{32} \times \frac{8}{8}=\frac{192}{192}}=2
$$

The ladies' quilting club made a quilt for the auction that sold for $\$ 300$. The quilt was 27 squares long and (6) squares wide. How many squares were on the quilt altogether?

Estimate:

$$
\begin{array}{lll}
27 & \times & 6 \\
\downarrow & & \downarrow \\
30 & \times & 6 \\
\hline
\end{array}
$$

Partial-Products Method:
27×6
$=\underline{20} \times \underline{6}=\underline{120}$

$$
\begin{aligned}
\frac{7}{120} \times \frac{6}{42} & =\frac{42}{162} \\
\frac{24}{8} & =162
\end{aligned}
$$

1.) Estimate the area and then solve using the partial-product method.

Estimate:

Partial-Products Method:

2.) Draw a line to break apart the rectangle.

Estimate:

Partial-Products Method:

$$
\ldots \times \ldots=\square=\square=\square=\square
$$

3.) Draw the area model for the given problem. Draw a line to show the partial products and then label the new rectangles.

Estimate:

Partial-Products Method:

$$
\begin{aligned}
& 25 \times 9 \\
& \int^{\times}{ }^{+}=\ldots \quad{ }^{\times} \quad= \\
&]^{+}{ }^{+}= \\
& 25 \times 9=
\end{aligned}
$$

1.) Estimate the area and then solve using the partial-product method.

Estimate:

Partial-Products Method:

$$
\underline{20} \times \frac{5}{23 \times 5}=\frac{100}{\frac{100}{26} \times \frac{3}{15} \times \frac{5}{7}=\frac{115}{115}}=\underline{15}
$$

2.) Draw a line to break apart the rectangle.

Estimate:

Partial-Products Method:
26×7
$\frac{20}{} \times \frac{7}{140}+\frac{140}{42}=\frac{6}{182} \times \underline{7}$
$26 \times 7=\underline{182}$
3.) Draw the area model for the given problem. Draw a line to show the partial products and then label the new rectangles. Solve using the partial-products method.

Estimate:

Partial-Products Method:

$$
\frac{20}{} \times \frac{9}{\frac{180}{25} \times \frac{180}{45} \times \frac{5}{9}=\frac{225}{225}}=\underline{2}=\frac{45}{}
$$

1.) $17 \times 6=$ \qquad

$$
17 \times 6=
$$

\qquad
2.) $3 \times 19=$ \qquad

$$
\left.\begin{array}{llllllllllllllllll}
X & X & X & X & X & X & X & X & X & X & X & X & X & X & X & X & X & X
\end{array}\right]
$$

$$
3 \times 19=
$$

\qquad
3.) Estimate the area. Use the partial-products method to solve.

Estimate:

Partial-Products Method:

$$
\begin{aligned}
& 24 \times 6 \\
& \int^{\times}{ }^{\times}=\ldots \quad{ }^{\times}{ }^{\times} \\
& ـ^{+}{ }^{+}{ }^{=} \\
& 24 \times 6=
\end{aligned}
$$

4.) Draw a line to show the partial products. Label the new rectangles.

Estimate:

$$
ـ^{\times} \times{ }^{\times}=
$$

Partial-Products Method:

$$
\sum^{\ldots}=\frac{16 \times 6}{16 \times-\ldots}=\square=\square
$$

5.) Draw an area model and then break apart to solve.

Estimate:

Partial-Products Method:

$$
\begin{aligned}
& 18 \times 9 \\
& \sum^{\times}=Z^{+}+\ldots= \\
& 18 \times 9=
\end{aligned}
$$

6.) For her birthday party, Phuynh wants to give a set of stickers to her friends as party favors. Each set contains 18 stickers. If she has 7 friends coming, how many stickers will she need? Choose the correct area model that represents the partial products method to solve.

A

B

C

D

1.) $17 \times 6=102$

$\underline{10 \times \underline{6}=\underline{60}}$
$\underline{7} \times \underline{6}=\underline{42}$

$$
\begin{aligned}
& \frac{60}{17 \times 6}=\underline{42}=\underline{102} \\
& 17 \times 2
\end{aligned}
$$

2.) $3 \times 19=$ \square

$$
\begin{aligned}
& \text { X X X X X X X X X X X X X X X X X X X } \\
& \underline{3} \times \underline{10}=\underline{30} \quad \underline{3} \times \underline{9}=\underline{27} \\
& \underline{30} \times \underline{27}=\underline{57} \\
& 3 \times 19=\underline{57}
\end{aligned}
$$

3.) Estimate the area. Use the partial-products method to solve.

Estimate:

$$
\begin{array}{ccc}
24 \times & 6 \\
\downarrow & \downarrow \\
20 & \times & 10 \\
\hline
\end{array}
$$

Partial-Products Method:
24×6

$$
\begin{aligned}
\frac{20}{} \times \frac{6}{24} \times \frac{120}{120}+\frac{4}{24} \times \frac{6}{144} & =\frac{24}{144}
\end{aligned}
$$

4.) Draw a line to show the partial products. Label the new rectangles.

Estimate:

$$
20 \times 6=120
$$

Partial-Products Method:

$$
\frac{10}{\square} \times \frac{6}{\frac{60}{60}}+\frac{6}{16} \times \frac{66}{6}=\frac{6}{96}=\underline{96}
$$

5.) Draw an area model and then break apart to solve.

Estimate:

Partial-Products Method:

$$
\frac{10}{} \times \frac{9}{\frac{90}{18} \times \frac{90}{72} \times \frac{8}{9}=\frac{9}{162}}=\underline{162}
$$

6.) For her birthday party, Phuynh wants to give a set of stickers to her friends as party favors. Each set contains 18 stickers. If she has 7 friends coming, how many stickers will she need? Choose the correct area model that represents the partial products method to solve.

B

C

D

24×7

$$
20 \times 7=1,400 \quad 4 \times 7=28
$$

$1,400+28-1,428$

24×7

$$
20 \times 7=1,400 \quad 4 \times 7=28
$$

$1,400+28-1,428$

Partial-Products Method

Step 1.) Estimate an answer.
39×4
$\downarrow \downarrow$

Step 2.) Break apart a factor into tens and ones.
$(\ldots+$

Step 3.) Multiply by the other factor.

Step 4.) Add the partial products.

$39 \times 4=$

Jaime practiced his math facts every day for 8 days. He solved 24 facts each day. How many math facts did he solve in 8 days?

$$
\begin{aligned}
& \text { Jaime's work: } \\
& \begin{array}{r}
24 \\
\times \quad 8 \\
\hline 32 \\
+16 \\
\hline 48
\end{array}
\end{aligned}
$$

Partial-Products Method

Step 1.) Estimate an answer.
39×4
$\downarrow \downarrow$

Step 2.) Break apart a factor into tens and ones.
$(\ldots) \times 4$

Step 4.) Add the partial products.

$39 \times 4=$

Jaime practiced his math facts every day for 8 days. He solved (24)facts each day. How many math facts did he solve in 8 days?

Jaime's work:

Partial-Products Method

Step 1.) Estimate an answer.
Step 2.) Break apart a factor into tens and ones.
Step 3.) Multiply by the other factor.
Step 4.) Add the partial products to find the total.

Solve using the partial-products method.
1.) 56×3

$\ldots \times 3=\ldots 3=$

2.) 23×5

3.)

4.)

Partial-Products Method

Step 1.) Estimate an answer.
Step 2.) Break apart a factor into tens and ones.
Step 3.) Multiply by the other factor.
Step 4.) Add the partial products to find the total.

Solve using the partial-products method.
1.) 56×3

$56 \times 3=$
2.) 23×5

3.)

4.)

1.) Draw a 23×8 area model on the grid below.

2.) Break apart the area model into tens and ones. Label the new rectangles with the correct multiplication sentence.

Estimate the answer.

Solve using the partial-products method.
4.)

Solve using the partial-products method.
5.)

6.) 19×8

Choose the correct answer.
7.) Maria's school was selling rolls of wrapping paper for a school fundraiser. Her goal was to sell 150 rolls over the 3-day weekend. She sold 48 rolls each day. Did Maria meet her goal?

A $48 \times 3=144$
B $40 \times 3=120$
C $8 \times 3=24$
D $120 \times 24=144$
1.) Draw a 23×8 area model on the grid below.

2.) Break apart the area model into tens and ones. Label the new rectangles with the correct multiplication sentence.

Estimate the answer.

Solve using the partial-products method.
4.)

Module MDWN
 Lesson 7
 Independent Practice Key

Solve using the partial-products method.
5.) 34×4

6.) 19×8

$19 \times 8=$ \qquad

Choose the correct answer.
7.) Maria's school was selling rolls of wrapping paper for a school fundraiser. Her goal was to sell 150 rolls over the 3-day weekend. She sold 48 rolls each day. Did Maria meet her goal?

A $48 \times 3=144$
B $40 \times 3=120$
C $8 \times 3=24$
D $120 \times 24=144$

Estimate:

$$
25 \times 7=175
$$

$$
7 \times 25=175
$$

$175 \div 7=$

Mr. Perez gave his 36 students 2 facts. It was the students' job to decide if the facts were corresponding or not and then write out the rest of the corresponding facts for the number family.

The first group of students were given the facts $45 \times 9=405$ and $405 \div 15=27$. This group said the facts were corresponding because both facts had 405 as 1 of the numbers. The additional corresponding facts they wrote were $9 \times 45=405$ and $405 \div 27=15$.

Are the students correct?

$$
\text { Estimate: } \begin{gathered}
25 \times 7 \\
\downarrow \\
\frac{20}{30} \times \frac{10}{7}=\frac{200}{210} \\
\frac{20}{} \times \frac{7}{\left(\frac{20}{140}+\frac{5}{5}\right) \times 7} \times \frac{14}{\frac{140}{25} \times \frac{35}{7}=\frac{175}{175}}=\underline{35}
\end{gathered}
$$

$$
\begin{aligned}
& 25 \times 7=175 \\
& 7 \times 25=175 \\
& 175 \div 7=25 \\
& 175 \div 25=7
\end{aligned}
$$

Mr. Perez gave his 36 students 2 facts. It was the students' job to decide if the facts were corresponding or not and then write out the rest of the corresponding facts for the number family.

The first group of students were given the facts $45 \times 9=405$ and $405 \div 15=27$. This group said the facts were corresponding because both facts had 405 as 1 of the numbers. The additional corresponding facts they wrote were $9 \times 45=405$ and $405 \div 27=15$.

Are the students correct? No

$$
\begin{aligned}
& 405 \div 9=45 \\
& 405 \div 45=9 \\
& 15 \times 27=405 \\
& 27 \times 15=405
\end{aligned}
$$

Match the corresponding facts.
1.) $28 \times 8=224$
$56 \times 4=224$
2.) $336 \div 6=56$
$4 \times 7=28$
3.) $28 \div 4=7$
$56 \times 6=336$
4.) $224 \div 56=4$
$8 \times 28=224$

Partial-Products Method

Step 1.) Estimate an answer.
Step 2.) Break apart a factor into tens and ones.
Step 3.) Multiply by the other factor.
Step 4.) Add the partial products to find the total.

Estimate and use the partial-products method to solve.
5.) $16 \times 4=$ \qquad 6.) $4 \times 16=$ \qquad

Write the two related division sentences for the multiplication problems above.
7.)
8.)
\qquad

From the division sentence, write the two related multiplication sentences.

$$
216 \div 8=27
$$

9.)
10.)

Match the corresponding facts.

Partial-Products Method

Step 1.) Estimate an answer.
Step 2.) Break apart a factor into tens and ones.
Step 3.) Multiply by the other factor.
Step 4.) Add the partial products to find the total.

Estimate and use the partial-products method to solve.
5.) $16 \times 4=\underline{64}$
6.) $4 \times 16=\underline{64}$
$20 \times 4=80$
$10 \times 4=40 \quad 6 \times 4=24$
$40+24=64$

Write the two related division sentences for the multiplication problems above.
7.) $64 \div 4=16$
8.) $64 \div 16=4$

From the division sentence, write the two related multiplication sentences.

$$
216 \div 8=27
$$

9.) $27 \times 8=216$

10.) $8 \times 27=216$

Partial-Products Method
Step 1.) Estimate an answer.
Step 2.) Break apart a factor into tens and ones.
Step 3.) Multiply by the other factor.
Step 4.) Add the partial products to find the total.

Estimate and use the partial-products method to solve.
1.) 32
$\times 8$
2.) 8
$\times 32$
3.) 72×4

Write the two related division facts for the multiplication facts above.
4.) \qquad
5.) \qquad

List the two multiplication facts and the two division facts for 5,27 , and 135.
6.) \qquad
8.) \qquad
7.) \qquad
9.) \qquad
10.) Victor has 4 boxes of sour candy. Each box has 36 candies in it. How many candies does Victor have altogether in his 4 boxes?
A
4×36
$(4 \times 30)+(4 \times 6)$
$120+24$
144 candies
C 4×42
$(4 \times 40)+(4 \times 2)$
$160+8$
168 candies
B
$4+36$
40 candies
D $\quad 36 \div 4$
9 candies

Partial-Products Method
Step 1.) Estimate an answer.
Step 2.) Break apart a factor into tens and ones.
Step 3.) Multiply by the other factor.
Step 4.) Add the partial products to find the total.

Estimate and use the partial-products method to solve.
1.)

2.) 8
$\begin{array}{r}\times 32 \\ \hline 256\end{array}$

$$
240+16=256
$$

3.) 72×4

$$
\begin{array}{cc}
\downarrow & \downarrow \\
70
\end{array} \underline{4}=\underline{280}
$$

$$
(\underline{70}+2) \times 4
$$

$$
\underline{70} \times 4=\underline{280} \underline{2} \times 4=\underline{8}
$$

$$
\underline{280}+\underline{8}=\underline{288}
$$

$$
72 \times 4=\underline{288}
$$

Write the two related division facts for the multiplication facts above.
4.) $431 \div 63=7$
5.) $431 \div 7=63$

List the two multiplication facts and the two division facts for 5,27 , and 135.
6.) $5 \times 27=135$
7.) $27 \times 5=135$
8.) $135 \div 5=27$
9.) $135 \div 27=5$
10.) Victor has 4 boxes of sour candy. Each box has 36 candies in it. How many candies does Victor have altogether in his 4 boxes?
(A)
4×36
C
42
$(4 \times 30)+(4 \times 6)$
$120+24$
144 candies
$(4 \times 40)+(4 \times 2)$
$160+8$
168 candies
B $\quad 4+36$
D $\quad \begin{aligned} & 36 \div 4 \\ & 9 \text { candies }\end{aligned}$

Lauren was asked to fill 3 cups with ice cubes at the lemonade stand. She counted 18 ice cubes in her bucket. If Lauren places the same number of cubes in each cup, how many ice cubes will be in each cup?

Lauren was asked to fill 3 cups with ice cubes at the lemonade stand. She counted 18 ice cubes in her bucket. If Lauren places the same number of cubes in each cup, how many ice cubes will be in each cup?

INTERVENTION

Step 1.) Estimate an answer.
Step 2.) Break apart a factor into tens and ones.
Step 3.) Multiply by the other factor.
Step 4.) Add the partial products to find the total.

Estimate and solve using the partial-products method.

Write the related division sentence for the multiplication problem above.
2.) \qquad

Estimate an answer.
3.) 68×7
\qquad $\times \ldots$ \qquad

Draw a line to show the partial products. Label the new rectangles.
4.) 16×5

Use base-10 ones to solve.
5.) $\underset{\text { Total }}{19} \div \frac{}{\text { People }}=\underset{\substack{\text { Equal } \\ \text { Share }}}{ } \quad \underline{\begin{array}{c}\text { Left } \\ \text { Over }\end{array}}$

6.) $19 \div$ \qquad $=$ \qquad

Step 1.) Estimate an answer.
Step 2.) Break apart a factor into tens and ones.
Step 3.) Multiply by the other factor.
Step 4.) Add the partial products to find the total.

Estimate and solve using the partialproducts method.

$$
\text { 1.) } \begin{aligned}
& 37 \\
& \times 4 \longrightarrow 30 \\
& \hline \times 44 \\
& \hline 120 \\
& 120+28=148
\end{aligned}
$$

Write the related division sentence for the multiplication problem above.
2.) $148 \div 37=4$ or $148 \div 4=37$

Estimate an answer.
3.) 68×7

$$
\underline{70} \times \underline{10}=\underline{490} \text { or } 65 \times 10=650
$$

Draw a line to show the partial products. Label the new rectangles.
4.) 16×5

Module MDWN Lesson 9 Independent Practice Key

Use base-10 ones to solve.
5.) $\underset{\text { Total }}{19} \div \frac{4}{\text { People }}=\frac{4}{\substack{\text { Equal } \\ \text { Share }}} \frac{3}{\substack{\text { Left } \\ \text { Over }}}$

6.) $19 \div \underline{6}=\underline{1}$

Decompose or break apart the numbers into tens and ones.

tens ones

Decompose or break apart the number into tens and ones.

$56=\frac{5}{\text { tens }} \frac{6}{\text { ones }}$
$\frac{6}{\text { tens }} \frac{3}{\text { ones }}=63$

tens ones
$87=\frac{8}{\text { tens }} \frac{7}{\text { ones }}$

$$
\frac{0}{\text { tens }} \frac{4}{\text { ones }}=4
$$

$\underset{\sim}{\sim}$

$\stackrel{y}{n}-0$

Module MDWN
Lesson 10
Modeled Practice \#2 Key

Draw base-10 materials to solve.
1.) Janice filled 6 baskets with equal amounts of biscuits. She had 74 biscuits to share among the baskets. How many biscuits did Janice place in each basket?

Use the base-10 pictures to solve.

2.)

Draw base-10 picture to solve.
3.) Equally share 38 marbles among 3 people.

Draw base-10 materials to solve.
1.) Janice filled 6 baskets with equal amounts of biscuits. She had 74 biscuits to share among the baskets. How many biscuits did Janice place in each basket?

Use the base-10 pictures to solve.
2.)

Draw base-10 pictures to solve.
3.) Equally share 38 marbles among 3 people.

Use tens and ones to solve.
1.) Equally share 52 marbles among 4 customers.

Write the division problem for the situations below.
2.) 36 acorns and 9 squirrels

Division problem:

3.) 39 acorns and 3 squirrels

Division problem: \qquad \div \qquad
Total Squirrels

List a multiplication equation and a division equation for the number family 64,8 , and 512.

4.)

\qquad 5.) \qquad

Use the base-10 picture to solve.
6.)

Draw tens and ones to solve.
7.) Equally share 81 marbles between 5 people.

\square

Use tens and ones to solve.
1.) Equally share 52 marbles among 4 customers.

Write the division problem for the situations below.
2.) 36 acorns and 9 squirrels

Division problem:

3.) 39 acorns and 3 squirrels

Division problem: $\frac{39}{\text { Total }} \div \frac{3}{\text { Squirrels }}$

Module MDWN Lesson 10 Independent Practice Key

List a multiplication equation and a division equation for the number family 64,8 , and 512.
4.) $64 \times 8=512$
or $8 \times 64=512$
5.) $512 \div 8=64$
or $512 \div 64=8$

Use the base-10 picture to solve.

6.)

Module MDWN
 Lesson 10 Independent Practice Key

Draw tens and ones to solve.
7.) Equally share 81 marbles among 5 people.

Complete using the multiplication table.
1.) List three multiples of 7 :

2.) List three multiples of 3 : \qquad

Write the division problem as a multiplication problem with the missing fact. Then solve.
3.) $54 \div 9=n$

$n=$ \qquad
4.) $36 \div 6=c$
\qquad
$c=$ \qquad

Complete the number family triangle.
5.)

6.)

Complete using the multiplication table.
1.) List three multiples of 7 :

2.) List three multiples of 3 :

Write the division problem as a multiplication problem with the missing fact. Then solve.
3.) $54 \div 9=n$

$$
\begin{aligned}
& n \times-9=54 \\
& n=6
\end{aligned}
$$

4.) $36 \div 6=c$

$$
\begin{aligned}
& \frac{n}{n} \times 6 \\
& c=6
\end{aligned}
$$

Complete the number family triangle.
5.)

6.)

Module MDWN
 Lesson 11

$30 \div 6=n$ or $n \times 6=30$
$45 \div 5=b$ or $b \times 5=45$

$$
b=
$$

$34 \div 5$

Multiples of 5 :

Estimation:

$$
\begin{aligned}
& 34 \div 5 \approx \\
& \quad \text { "is about" }
\end{aligned}
$$

Module MDWN
 Lesson 11

$255 \div 4=f$ or $f \times 4=255$

Multiples of 4:

Estimation:

$255 \div 4 \approx$ "is about"

$$
\begin{aligned}
& 30 \div 6=n \text { or } n \times 6=30 \\
& n=\underline{5} \\
& 45 \div 5=b \text { or } b \times 5=45 \\
& b=9 \\
& 34 \div 5
\end{aligned}
$$

Multiples of 5 :

$5,10,15,20,25,30,35,40,45,50$

$35 \div 5=7$

$$
\begin{aligned}
34 & \div 5 \approx \frac{7}{\text { "is about" }}
\end{aligned}
$$

$$
255 \div 4=f \quad \text { or } \quad f \times 4=255
$$

Multiples of 4:

20, 24, 28

Estimation: $24 \div 4=6$

$$
240 \div 4=60
$$

$$
28 \div 4=7
$$

$280 \div 4=70$

$255 \div 4 \approx 60$ "is about"

Estimate an answer.
1.) Bridget collected 295 signatures for the petition. If she collected about the same number of signatures each day for 7 days, about how many signatures did we get each day?

Multiples of 7: \qquad

Estimation: \qquad
\qquad
\qquad
\qquad
 \qquad
about \qquad signatures
2.) $56 \div 6$

Multiples of 6: \qquad

Estimation: \qquad

\qquad
\qquad
3.) $370 \div 9$

Or $\quad _$_ ${ }^{\times}=$

Multiples of 9:

Estimation: \qquad
\qquad
\qquad
\qquad
\qquad \div \qquad \approx \qquad

Estimate an answer.
1.) Bridget collected 295 signatures for the petition. If she collected about the same number of signatures each day for 7 days, about how many signatures did we get each day?
$\underline{295} \div 7=n$ or $n \times \underline{2}=\underline{295}$

Multiples of 7: $7,14,21,28,35,42$

Estimation: $28 \div 7=4$

$$
\begin{aligned}
& 280 \div 7=40 \\
& 35 \div 7=5 \\
& \hline 350 \div 7=50 \\
& \hline
\end{aligned}
$$

$\underline{295} \div 7 \approx 40$
about 40 signatures
2.) $56 \div 6$

$$
\text { or } n \times 6=56
$$

Multiples of 6: 6, 12, 18, 24, 30, 36, 42, 48, 54, 60

Estimation:

$$
\begin{aligned}
& 54 \div 6=9 \\
& 60 \div 6=10
\end{aligned}
$$

$$
56 \div 6 \approx 9
$$

3.) $370 \div 9$

$$
\text { or } n \times 9=370
$$

Multiples of 9: $9,18,27,36,45$

Estimation: \begin{tabular}{rl}
\& $36 \div 9=4$

\& | $360 \div 9=40$ | |
| ---: | :--- |
| $45 \div 9=5$ | |
| | $450 \div 9=50$ |

\end{tabular}

$370 \div 9 \approx 40$

Use base-10 pictures to solve.
1.) Equally share 92 candies among 4 customers.

$\overline{\text { Dividend }}$

Estimate.
2.) 52×6

Estimate an answer.
4.) Miguel shipped presents to his nieces and nephews who are all under the age of 10. He shipped 6 boxes of presents. Miguel spent $\$ 315$ in shipping costs. If each box cost about the same to ship, how much does it cost to ship one box?

Multiples of 6:

Estimation: \qquad
\qquad
\qquad
\qquad
\qquad
\qquad \approx \qquad
about \$ \qquad
5.) $61 \div 8$
\qquad

Multiples of 8: \qquad

Estimation: \qquad
\qquad
\qquad \div \qquad \approx \qquad
6.) $482 \div 5$

Or ${ }^{\times} \quad=$

Multiples of 5 :

Estimation: \qquad
\qquad
\qquad
\qquad
\qquad \div \qquad \approx \qquad

Use base-10 pictures to solve.
1.) Equally share 92 candies among 4 customers.

Estimate.
2.) 52×6

$$
\underline{50} \times \underline{6}=300
$$

3.) $\begin{array}{r}84 \\ \times \quad 5 \\ \hline\end{array} \quad \begin{array}{r}80 \\ \hline 400\end{array}$

Module MDWN Lesson 11 Independent Practice Key

Estimate an answer.
4.) Miguel shipped presents to his nieces and nephews who are all under the age of 10 . He shipped 6 boxes of presents. Miguel spent $\$ 315$ in shipping costs. If each box cost about the same to ship, how much does it cost to ship one box?
$315 \div 6=n \quad$ or $n \times \underline{6}=\underline{315}$

Multiples of 6: 6, 12, 18, 24, 30, 36

Estimation:

$$
\begin{aligned}
& 30 \div 6=5 \\
& \hline 300 \div 6=50 \\
& \hline 36 \div 6=6 \\
& \hline 360 \div 6=60 \\
& \hline
\end{aligned}
$$

$315 \div 6 \approx 50$
about \$ 50
5.) $61 \div 8$

Multiples of 8: $8,16,24,32,40,48,56,64$

Estimation:

$$
\begin{aligned}
& 56 \div 8=7 \\
& 64 \div 8=8
\end{aligned}
$$

$61 \div 8 \approx 8$
6.) $482 \div 5$
or $n \times 5=482$
Multiples of 5: $\quad 30,35,40,45,50$

Estimation: $45 \div 5=9$

$$
\begin{aligned}
& 450 \div 5=90 \\
& 50 \div 5=10 \\
& 500 \div 5=100 \\
& \hline
\end{aligned}
$$

$482 \div 5 \approx \underline{100}$

Equally share 51 marbles among 4 bags.

$51 \div 4$
Estimation: \qquad
$51 \div 4 \approx$
"is about"

Equally share 51 marbles among 4 bags.

$51 \div 4$
Estimation: 48 and 52; $52 \div 4=13$
$51 \div 4 \approx 13$
"is about"

Estimate the answer.
1.) $62 \div 5$
or \qquad \times _ $=$

Estimation:

\qquad
$62 \div 5$
is about
\qquad
Use base-10 materials to solve.
2.)

3.) Write the division equation for the picture above.

4.) Christian had 72 baseball cards he wanted to share between himself and his 4 friends. About how many baseball cards does Christian and each of his friends get?

What is the problem asking you to find?

Estimation: \qquad

If Christian were to share the cards equally, exactly how many cards would each person get?

How many are left over?

Estimate the answer.
5.) $18 \div 4$

\qquad
Estimation: \qquad
\qquad
$18 \div 4$
\approx
is about
6.) Use the picture to share the 58 slices of pizza among 4 people.

7.) Write the division sentence for the picture above.

$$
\begin{array}{lc}
\\
\begin{array}{l}
\text { Total } \\
\text { Tens }
\end{array} & \overline{\text { Total }} \\
\text { Ones }
\end{array} \div \overline{\text { Divisor }}=\overline{\text { Quotient }} \quad \begin{aligned}
& \text { Remainder }
\end{aligned}
$$

Estimate the answer. Then solve using equal sharing.
1.) $62 \div 5$ or $\underline{n} \times \underline{5}=\underline{62}$

$$
\text { Estimation: } \quad 60 \div 5=12
$$

$$
\begin{array}{r}
65 \div 5=13 \\
62 \div 5 \underset{\text { is about }}{\approx} 12
\end{array}
$$

Use base-10 materials to solve.

$$
62 \div 5
$$

2.)

3.) Write the division equation for the picture above.
4.) Christian had 72 baseball cards he wanted to share between himself and his 4 friends. About how many baseball cards does Christian and each of his friends get?

What is the problem asking you to find?
$\underline{72} \div 5=n \quad$ or $n \div 3$
Estimation: $70 \div 5=14 \quad 75 \div 5=15$

If Christian were to share the cards equally, exactly how many cards would each person get?

How many are left over?
2 leftover

Estimate the answer.
5.) $18 \div 4$ or $n \times \underline{4}=\underline{18}$

$$
\text { Estimation: } \quad 16 \div 4=4
$$

$$
20 \div 4=5
$$

$$
18 \div 4 \underset{\text { is about }}{\approx} 4 \text { OR } 5
$$

6.) Use the picture to share the 58 slices of pizza among 4 people.

7.) Write the division sentence for the picture above.

$$
\frac{5}{\substack{\text { Total } \\
\text { Tens }}} \frac{8}{\substack{\text { Total } \\
\text { Ones }}} \div \frac{4}{\text { Divisor }}=\frac{14}{\text { Quotient }} \quad \begin{gathered}
\mathrm{R} \\
\text { Remainder }
\end{gathered}
$$

Use the base-10 picture to solve.
1.) Equally share 52 acorns among 4 squirrels.

Division equation:

$$
\overline{\text { Total }} \div \overline{\text { Squirrels }}=\overline{\substack{\text { Equal } \\ \text { Share }}} \quad \mathrm{C} \underset{\substack{\text { Left } \\ \text { Over }}}{ }
$$

2.) Estimate the answer.
\square
Estimation: \qquad
$58 \div 7 \approx$
is about
3.)

$$
\begin{aligned}
& 423 \div 8 \approx 5 \\
& 400 \div 8=5
\end{aligned}
$$

Is this estimation true or false? \qquad

Why?

Module MDWN
 Lesson 12 Independent Practice

Draw base-10 pictures to solve. Choose the correct answer.
4.) Rachel ordered 38 beads for 3 necklaces. After the 3 necklaces are made with equal beads on each, how many beads will be left over?

A 1 left over
C 2 left over
B 5 left over
D 3 left over

Use the base-10 picture to solve.
1.) Equally share 52 acorns among 4 squirrels.

Division equation: $\quad \frac{52}{\text { Total }} \div \frac{4}{\text { Squirrels }}=\frac{13}{\begin{array}{c}\text { Equal } \\ \text { Share }\end{array}} \frac{0}{\begin{array}{c}\text { Left } \\ \text { over }\end{array}}$
2.) Estimate the answer.

$$
\begin{gathered}
58 \div 7 \text { or } \frac{n}{5} \times \frac{7}{=}=\frac{58}{2} \\
\text { Estimation: } \frac{56 \div 7=8}{63 \div 7=9} \\
58 \div 7 \approx \text { is about } \frac{8}{2}
\end{gathered}
$$

3.)

$$
\begin{aligned}
& 423 \div 8 \approx 5 \\
& 400 \div 8=5
\end{aligned}
$$

Is this estimation true or false?

false

$$
\text { Why? } 400 \div 8=50 \quad 423 \div 8 \approx 50
$$

Module MDWN
 Lesson 12 Independent Practice Key

Draw base-10 picture to solve. Choose the correct answer.
4.) Rachel ordered 38 beads for 3 necklaces. After the 3 necklaces are made with equal beads on each, how many beads will be left over?

Estimate:

18
$\times \quad 13$
54
$+\quad 180$
234

Solve using the partial-products method.
1.) Elijah had a birthday party at Go Cart Racing Track. He had 12 friends attend his party. It cost each friend \$14 to race a go-cart around the track 5 times. The birthday boy was free. How much money was it for all 12 friends to race the track?

2.) Estimate the area, break apart the area model, label the dimensions, and then solve using partial products.

Estimate:

3.) Estimate the area, break apart the area model, label the dimensions, and then solve using partial products.

Estimate:

Solve using the partial products method.
1.) Elijah had a birthday party at Go Cart Racing Track. He had 2 friends attend his party. It cost each friend (\$14)to race a go-cart around the track 5 thes. The birthday boy was free. How much money was it for all 12 friends to race the track?

$$
\begin{aligned}
& 8+40=48 \\
& 20+100=120 \\
& 48+120=168 \\
& \$ 168
\end{aligned}
$$

2.) Estimate the area, break apart the area model, label the dimensions, and then solve using partial products.

20
5

10

												-											
			\times	$\times 20$	$0=$	200					10	$\times 5$	$=5$	50									
			$2 \times$	20	$0=$	40						$\times 5$	$=1$										

Estimate:

12	\times	25		$200+50=250$
\downarrow		\downarrow		$40+10=50$
10	\times	30	300	$250+50=300$

3.) Estimate the area, break apart the area model, label the dimensions, and then solve using partial products.

30
4

Estimate:

Estimate.
1.)
$38 \div 3$
Or $\quad \times \quad=$ \qquad

Multiples of 3 : \qquad

Estimation: \qquad
$38 \div 3 \approx$

Use the picture to solve $38 \div 3$.

2.)

Total
Tens
 Ones (\# of Sharers)
Quotient
(Equal
Share)

R Remainder (\# Left Over)

3.) Estimate:

4.) Label the dimensions and then solve using partial products.

5.) Estimate:

6.) Break apart by using partial products and label the dimensions.

$$
14 \times 43
$$

Estimate the area, label the dimensions, and use the partial products to solve.
7.) A community group is painting a rectangular mural that will be divided into 4 smaller rectangles. The dimensions of the mural are 24 feet by 36 feet. They divided the mural as shown below. What is the area of the entire mural?


```
Module E
Lesson 13
Independent Practice
```

8.) Dan is plotting the land for his farm. He knows that the dimensions of his land are 16 acres by 24 acres, but he wants to figure out the area. Choose the area model that correctly represents the partial products to solve.
A

B

C

								-						

D | | | | | | | | | | | A | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

\square

Estimate.
1.)

$$
38 \div 3
$$

or $n \times 3$ Multiples of 3: $30,33,36,39$

Estimation: $\quad 36 \div 3=12$

$$
39 \div 3=13
$$

$$
38 \div 3 \approx 13
$$

Use the picture to solve $38 \div 3$.

2.)

Dividend

Module MDWN

3.) Estimate:

answers may vary

4.) Label the dimensions and then solve using partial products.

$$
\begin{aligned}
200+60 & =260 \\
160+48 & =208 \\
260+208 & =468
\end{aligned}
$$

5.) Estimate:

answers may vary

6.) Break apart by using partial products and label the dimensions.

$$
14 \times 43
$$

$$
\begin{array}{r}
400+30=430 \\
160+12=172 \\
430+172=602
\end{array}
$$

Estimate the area, label the dimensions, and use the partial products to solve.
7.) A community group is painting a rectangular mural that will be divided into 4 smaller rectangles. The dimensions of the mural are 24 feet by 36 feet. They divided the mural as shown below. What is the area of the entire mural?

$$
\begin{aligned}
600+120 & =720 \\
120+24 & =144 \\
720+144 & =864 \text { feet }
\end{aligned}
$$

8.) Dan is plotting the land for his farm. He knows that the dimensions of his land are 16 acres by 24 acres, but he wants to figure out the area. Choose the area model that correctly represents the partial products to solve.

$$
19 \times 12
$$

Module MDWN
Lesson 14
Engaged Practice Key

$$
19 \times 12
$$

$$
\begin{aligned}
100+20 & =120 \\
90+18 & =108 \\
120+108 & =228
\end{aligned}
$$

Marcus volunteers at his local food bank. If the food bank collects 75 pounds of food every day, how much food will the food bank collect in October, which has 31 days?

Estimate:

Estimate: 32×57

$$
\begin{array}{r}
1,500+210=1,710 \\
100+14=114 \\
1,710+114=1,824
\end{array}
$$

Marcus volunteers at his local food bank. If the food bank collects 75 pounds of food every day, how much food will the tood bank collect in October, which has 31 days?

Estimate: $\underline{30} \times \underline{80}=\underline{2,400}$

$$
\begin{aligned}
2,100+150 & =2,250 \\
70+5 & =75 \\
2,250+75 & =2,325
\end{aligned}
$$

2,325 lbs

1.) Solve using partial products.

Estimate:

81

2.) Solve using partial products.

Estimate:

28

Use the partial-products method to solve. Draw an area model to represent the problem.
3.) In Leslie's school, there are 28 desks in each classroom. There are 42 classrooms in the building. 632 students attend Leslie's school. How many desks are there altogether?
1.) Solve using partial products.

Estimate:

$4,000+240=4,240$
$50+3=53$
$4,240+53=4,293$
2.) Solve using partial products.

Estimate:

$$
\begin{aligned}
1,400+560 & =1,960 \\
60+24 & =84 \\
1,960+84 & =2,044
\end{aligned}
$$

Use the partial-products method to solve. Draw an area model to represent the problem.
3.) In Leslie's school, there are 28 desks in each classroom. There are 42 classrooms in the building. 632 students attend Leslie's school. How many desks are there altogether?

$$
\begin{aligned}
& 800+40=840 \\
& 320+16=336 \\
& 840+336=1,176
\end{aligned}
$$

1,176 desks
1.) Estimate:

2.) Label the dimensions of the area model broken into partial products. List the partial products.

-																																	

3.) Estimate the area, break apart the area model, label the dimensions, and then solve using partial products.

Estimate:

4.) Break apart the area model. Label the dimensions, then solve using partial products.

Estimate:

$$
24 \times 48
$$

Module MDWN
 Lesson 14 Independent Practice

5.) Nyja reads 24 pages in her book each day. If she reads for 14 days, how many pages will she have read? Choose the correct way to break apart the factors.
A $10+10+4$
$10+4$
C $22+4$
$12+2$
B $12+12$
D $20+4$
$7+7$
$10+4$
1.) Estimate:

$$
\begin{array}{ccc}
18 & \times & 35 \\
\downarrow & \downarrow \\
20 & \times \underline{40}= \\
\hline
\end{array}
$$

2.) Label the dimensions of the area model broken into partial products. List the partial products.

			30									5
	-	-										
		10						11				-
		10					$10 \times$	$30=300$			$10 \times$	$5=50$
		\square										
								-				
		1										
		8					$8 \times$	$30=240$			8×5	$5=40$
											$8 \times$	
								-			-	

Module MDWN
 Lesson 14 Independent Practice Key

3.) Estimate the area, break apart the area model, label the dimensions, and then solve using partial products.

Estimate:

$$
\begin{aligned}
2,800+160 & =2,960 \\
350+20 & =370 \\
2,960+370 & =3,330
\end{aligned}
$$

4.) Break apart the area model. Label the dimensions, then solve using partial products.

Estimate:

24×48

$$
\begin{aligned}
& 800+160=960 \\
& 160+32=192 \\
& 960+192=1,152
\end{aligned}
$$

Module MDWN
 Lesson 14 Independent Practice Key

5.) Nyja reads 24 pages in her book each day. If she reads for 14 days, how many pages will she have read? Choose the correct way to break apart the factors.
A $10+10+4$
C $22+4$
$10+4$
$12+2$
B $12+12$
$7+7$
(D) $\begin{array}{r}20+4 \\ 10+4\end{array}$

$$
\begin{array}{rr}
59 \times 71 & \neq 1,039 \\
5 \times 70 & =350 \\
50 \times 1= & 50 \\
1 \times 9 & = \\
9 \times 70 & =630 \\
350 \times 50= & 400 \\
9 \times 630 & =639 \\
400 \times 639 & =1,039
\end{array}
$$

$$
\begin{array}{rr}
59 \times 71 & \neq 1,039 \\
5 \times 70 & =350 \\
50 \times 1 & =50 \\
1 \times 9 & =9 \\
9 \times 70 & =630 \\
350 \times 50 & =400 \\
9 \times 630 & =639 \\
400 \times 639 & =1,039 \\
59 \times 71 & \\
\downarrow & \downarrow \\
60 \times 70 & =4,200
\end{array}
$$

Use the partial-product method and multiplication square to solve.
1.) $37 \times 68=$ \qquad

2.) $29 \times 42=$ \qquad

\qquad

Use the partial-product method and multiplication square to solve.
1.) $37 \times 68=\underline{2,516}$

2.) $29 \times 42=\underline{1,218}$

Solve using the partial-product method and the area model.
1.) 15×23

$$
15 \times 23=
$$

\qquad
2.) 62×59

\qquad
\square $62 \times 59=$ \qquad

Solve using the partial-product method and the multiplication square.

$76 \times 43=$ \qquad

Solve using the partial-product method and the multiplication square.

88
\times
$31=$ \qquad

Choose the correct answer.
5.) Brittany was using the multiplication square to solve 92×87. Which square is correct?
A

C

B

D

Solve using the partial-product method and the area model.

2.) 62×59
$\downarrow \quad \downarrow$
$\underline{60} \times \underline{60}=\underline{3,600}$

$3,000+540=3,540$
$100+18=118$
$3,540+118=3,658$
$62 \times 59=\underline{3,658}$

Solve using the partial-product method and the multiplication square.

Module MDWN Lesson 15 Independent Practice Key

Solve using the partial-product method and the multiplication square.

| 80 | $80 \times 30=2,400$ |
| :---: | :---: | $80 \times 1=80$

$$
\begin{aligned}
2,400+80 & =2,480 \\
240+8 & =248 \\
2,480+248 & =2,728 \\
88 \times 31 & =\underline{2,728}
\end{aligned}
$$

Choose the correct answer.
5.) Brittany was using the multiplication square to solve 92×87. Which square is correct?

D

$$
50+25=75
$$

$$
38+13=51
$$

$$
75+51=126
$$

30
5

20	$20 \times 30=600$		
	$20 \times 5=100$		
8	$8 \times 30=240$	$8 \times 5=40 \quad$	
:---			

$600+100=700$
$240+40=280$
$700+280=980$

Raul's car can drive 28 miles on 1 gallon of gas. If he used 37 gallons of gas this month, how far did he drive?

Module MDWN Lesson 16 Modeled Practice \#2 Key

Raul's car can drive 28 miles 1 gallon of gas. If he used 37 gallons of gas this month, how far did he drive?

Use the partial-product method and multiplication square to solve.
1.) 42×93

2.) 15×82

$15 \times 82=$ \qquad

Use the partial-product method and multiplication square to solve.
1.) 42×93

$$
\begin{gathered}
3,600+120=3,720 \\
180+6=186 \\
+3,720 \\
+\quad 186
\end{gathered}
$$

$42 \times 93=\underline{3,906}$
2.) 15×82

Choose the best answer.
1.) Phillip's work is shown below. He made a mistake but is not sure where. What mistake did Phillip make?

A $30 \times 40 \neq 120$
B $30 \times 2 \neq 60$
C $180+294 \neq 474$
D $40 \times 40 \neq 1,600$

Use the partial-product method and multiplication square to solve.
2.) 81×13

$81 \times 13=$ \qquad

Module MDWN
 Lesson 16 Independent Practice

Use the partial-product method and multiplication square to solve.
3.) 55×94

$55 \times 94=$ \qquad
4.) 72×32

$72 \times 32=$ \qquad

Choose the correct answer.
5.) Mrs. Jimenez ordered 38 boxes of pencils for the schools. If there are 24 pencils in each box, how many total pencils did she order?
A

20		4
60	160	$600+160=760$ $240+80$
240	80	320
	$760+320=1,080$	

B

	20	4	
30	600	120	$600+120=720$
			$160+32=192$
8	160	32	$720+192=912$

C

	20	4	
30	60	120	$60+120=180$
			$140+16=200$
8	140	16	$180+200=380$

Choose the best answer.
1.) Phillip's work is shown below. He made a mistake but is not sure where. What mistake did Phillip make?

(A) $30 \times 40 \neq 120$

B $30 \times 2 \neq 60$
C $180+294 \neq 474$
D $40 \times 40 \neq 1,600$

Use the partial-product method and multiplication square to solve.
2.) 81×13

$$
\begin{aligned}
800+240 & =1,040 \\
10+3 & =13 \\
1,040+13 & =1,053 \\
81 \times 13 & =1,053
\end{aligned}
$$

Module MDWN Lesson 16 Independent Practice Key

Use the partial-product method and multiplication square to solve.
3.) 55×94

$$
\begin{aligned}
4,500+200 & =4,700 \\
450+20 & =470 \\
4,700+470 & =5,170 \\
55 \times 94 & =5,170
\end{aligned}
$$

Module MDWN Lesson 16 Independent Practice Key

Choose the correct answer.
5.) Mrs. Jimenez ordered 38 boxes of pencils for the schools. If there are 24 pencils in each box, how many total pencils did she order?

A

20		4
60	160	$600+160=760$ $240+80$
240	80	320
	$760+320=1,080$	

B

20		4
60	120	$600+120=720$ $160+32=192$
160	32	

C

20	
60	120
60	$60+120=180$ $140+16=200$ 140

Complete using the multiplication table.
1.) List the multiples of 6 :
2.) $17 \div 4 \approx$ \qquad

$$
\begin{gathered}
\quad \div 4 \approx \\
\div 4 \approx
\end{gathered}
$$

3.) $29 \div 8 \approx$ \qquad

$$
\begin{aligned}
& \quad \div 8 \approx \\
& \div 8 \approx
\end{aligned}
$$

4.) $51 \div 7 \approx$ \qquad

$$
\begin{aligned}
& \div 7 \approx \\
& \div 7 \approx
\end{aligned}
$$

Complete using the multiplication table.
1.) List the multiples of 6 :
2.) $17 \div 4 \approx 4$
$16 \div 4 \approx 4$
$20 \div 4 \approx 5$
3.) $29 \div 8 \approx 4$
$\underline{24} \div 8 \approx \underline{3}$
$32 \div 8 \approx 4$
4.) $51 \div 7 \approx \underline{7}$
$\underline{49} \div 7 \approx \underline{7}$
$\underline{56} \div 7 \approx \underline{8}$

Expanded Form

Module MDWN
 Lesson 17
 Modeled Practice Key

$\frac{5}{\text { Base-10 } \text { Form }}$ hundreds 6 tens 2 ones

562
Standard Form
$500+60+2$
Expanded Form
$\frac{5}{\text { Base-10 Form }}$ hundreds \quad tens 12 ones

$500+50+12$
 Expanded Form

Using base-10 materials, write the number in different forms.
1.) Place 3 hundreds, 2 tens, and 4 ones on your desk.

What number did you build?
Standard Form
How many groups of $100 ?$ \qquad

How many groups of 10 ? \qquad

How many groups of 1 ? \qquad

Expanded Form

Break apart the number in another way. \qquad

Using the picture below，write the number in different forms．

2．）

目自自自自自
ㅁ ㅁ ㅁ ㅁ

How many in all？
Standard Form

How many groups of $100 ?$ \qquad

How many groups of $10 ?$ \qquad

How many groups of $1 ?$ \qquad

Expanded Form

Break apart the number in another way． \qquad

Using base-10 materials, write the number in different forms.
1.) Place 3 hundreds, 2 tens, and 4 ones on your desk.

Using the picture below, write the number in different forms.
2.)

ㅁ ㅁ ㅁ ㅁ

How many in all? 455
Standard Form
How many groups of $100 ?$ 4

How many groups of $10 ?$ \qquad

How many groups of 1? 5

$$
400+50+5
$$

Expanded Form

Break apart the number in another way. answers may vary

Solve using the partial-product method and multiplication square.
1.) 45×26

$45 \times 26=$ \qquad
2.) 14×56

$14 \times 56=$
3.) Place 7 hundreds, 5 tens, and 1 one in front of you.

> What number did you build?
\qquad
Standard Form
How many groups of $100 ?$ \qquad

How many groups of $10 ?$ \qquad

How many groups of $1 ?$ \qquad

Expanded Form

Break apart the number in another way. \qquad

Using the picture below, write the number in different forms.
4.)

 - ロ ロ

How many in all?

> Standard Form

How many groups of $100 ?$ \qquad

How many groups of $10 ?$ \qquad

How many groups of $1 ?$ \qquad

Expanded Form

Break apart the number in another way.

Choose the best answer.
5.) Jerry is using the partial-product method to decompose 412. He writes $400+10+2$ for the expanded form, and then breaks apart each value. What is another way Jerry can write this number?

A $400+20+1$
B $300+20+2$
C $300+12$
D $300+110+2$

Solve using the partial-product method and multiplication square.
1.) 45×26

$\frac{\downarrow}{\downarrow} \underset{\downarrow}{\downarrow} \times \underline{30}=\underline{1,500}$
$\underline{30}$

$$
\begin{aligned}
800+240 & =1,040 \\
100+30 & =130 \\
1,040+130 & =1,170 \\
45 \times 26 & =1,170
\end{aligned}
$$

2.) 14×56
$\frac{1}{\downarrow}+$
10×60

| 506 |
| ---: | ---: | ---: | | 500 | 60 |
| :--- | :--- |
| 200 | 24 | | $500+60$ | $=560$ |
| ---: | :--- |
| $200+24$ | $=225$ |
| $560+224$ | $=784$ |
| 14×56 | $=784$ |

3.) Place 7 hundreds, 5 tens, and 1 one in front of you.

Expanded Form

Break apart the number in another way. answers may vary

Module MDWN
 Lesson 17 Independent Practice Key

Using the picture below，write the number in different forms．
4．）
目目目自自
－ロ ロ

How many in all？
643
Standard Form
How many groups of $100 ?$ \qquad

How many groups of 10 ？ \square

How many groups of 1 ？ \qquad

$$
600+40+3
$$

Expanded Form

Break apart the number in another way．answers may vary

Choose the best answer．
5．）Jerry is using the partial－product method to decompose 412．He writes $400+10+2$ for the expanded form，and then breaks apart each value． What is another way Jerry can write this number？

A $400+20+1$
B $300+20+2$
C $300+12$
（D） $300+110+2$
1.)

Standard Form

Expanded Form

2.)

Expanded Form

3.)

Standard Form

4.)

Standard Form

Expanded Form
1.) 334
Standard Form

$300+30+4$
Expanded Form
2.)

187
Standard Form

$100+80+7$
Expanded Form
3.)

Standard Form

$800+60+3$

Expanded Form
4.) $\frac{902}{\text { Standard Form }}$
$\frac{9}{\text { Base-10 Form }}$ hundreds $\quad \mathbf{0}$ tens ones

$$
900+2
$$

Expanded Form

Quotient
II

Dividend

$\stackrel{y}{-0}$

2

II

Dividend
$\stackrel{y}{2}-0$

Use the base-10 picture of hundreds, tens, and ones to fill in the blanks and solve.
1.) 184 candies or

2.) 743 candies

Draw a base-10 picture to solve.
3.) Peter was helping out at his uncle's store. He was given 4 piñatas and 895 pieces of candy and prizes. The piñatas cost $\$ 24$ each. Peter's uncle told him to fill each piñata with the same amount of candy and prizes. How many pieces of candy and prizes will Peter put in each piñata?

$$
\overline{\text { Dividend }} \div \div \frac{}{\text { Divisor }}=\square \quad \frac{R}{\text { Quotient }} \quad \begin{aligned}
& \text { Remainder }
\end{aligned}
$$

Use the base-10 picture of hundreds, tens, and ones to fill in the blanks and solve.
1.) 184 candies or

2.) 743 candies

Draw a base-10 picture to solve.
3.) Peter was helping out at his uncle's store. He was given 4 piñatas and 895 pieces of candy and prizes. The piñatas cost $\$ 24$ each. Peter's uncle told him to fill each piñata with the same amount of candy and prizes. How many pieces of candy and prizes will Peter put in each piñata?

Using the picture below, write the number in different forms.
1.)

How many in all?
Standard Form

How many groups of $100 ?$ \qquad

How many groups of $10 ?$ \qquad

How many groups of $1 ?$ \qquad

Expanded Form
2.) Write another way to break apart the number.

Use the base-10 picture of hundreds, tens, and ones to fill in the blanks and solve.
3.) 247 gems or $\square \quad \square|\mid \ldots \cdot$


```
Module MDWN
Lesson 18 Independent Practice
```

Use the base-10 picture of hundreds, tens, and ones to fill in the blanks and solve.
4.) 936 gems or

Choose the correct answer.
5.) Mariel collected shells on the beach. She wanted to fill 3 baskets with shells to give to her sisters. Mariel collected 128 shells in all. Which equation is correct for how Mariel should divide her shells equally into 3 baskets?

A $128 \div 3=42$ R 2
B $128 \div 3=384$
C $128 \times 3=384$
D $3 \div 128=42$ R 2

Using the picture below, write the number in different forms.
1.)

\qquad $\begin{array}{llll}\square & \square & \square \\ \square\end{array}$

How many in all? 834
Standard Form

How many groups of \(100 ? \quad \begin{aligned} \& 8

\& How many groups of 10 ? ~\end{aligned} .\)| 3 |
| :--- |

How many groups of 1?
$800+40+3$
Expanded Form
2.) Write another way to break apart the number. answers may vary

Module MDWN Lesson 18 Independent Practice Key

Use the base-10 picture of hundreds, tens, and ones to fill in the blanks and solve.
3.) 247 gems or \square N/ $\because: \cdot$

Module MDWN Lesson 18 Independent Practice Key

Use the base-10 picture of hundreds, tens, and ones to fill in the blanks and solve.

Choose the correct answer.
5.) Mariel collected shells on the beach. She wanted to fill 3 baskets with shells to give to her sisters. Mariel collected 128 shells in all. Which equation is correct for how Mariel should divide her shells equally into 3 baskets?
(A) $128 \div 3=42$ R 2

B $128 \div 3=384$
C $128 \times 3=384$
D $3 \div 128=42$ R 2

Donovan was given the division problem $327 \div 2$. He decided to draw a base-10 picture to help solve the problem. Is this the most efficient way to solve this problem?

$\stackrel{y}{2}-0$ Module MDWN Lesson 19 Modeled Practice \#1 Key

Donovan was given the division problem $327 \div 2$. He decided to draw a base-10 picture to help solve the problem. Is this the most efficient way to solve this problem?

Use the base-10 picture to fill in the blanks and solve.
1.)

Dividend $\quad \overline{\text { Quotient }}$
2.)

Dividend

Draw a base-10 picture to solve.
3.) There were a total of 495 fans at the 3 play-off games. If the same number of fans attend each game, how many fans attended the first game?

What is the problem asking you to find?

Use the base-10 picture to fill in the blanks and solve.

2.)

Draw a base-10 picture to solve.
3.) There were a total of 495 fans at the 3 play-off games. If the same number of fans attend each game, how many fans attended the first game?

What is the problem asking you to find? number of fans at a game

165 fans
1.) Use the base-10 picture to answer the questions below.

How many in all? \qquad
Standard Form

How many groups of $100 ?$ \qquad

How many groups of 10 ? \qquad

How many groups of 1 ? \qquad

Expanded Form

2.) Write another way to break apart the number. \qquad

Use the partial-product method and multiplication square to solve.

\qquad

```
Module MDWN
Lesson 19 Independent Practice
```

Use the base-10 picture to fill in the blanks and solve.

5.)

Use the base-10 picture to fill in the blanks and solve.
6.)

1.) Use the base-10 picture to answer the questions below.

How many in all?
493
Standard Form
How many groups of $100 ?$ 4

How many groups of 10 ? \qquad

How many groups of 1? \qquad

$$
400+90+3
$$

Expanded Form

2.) Write another way to break apart the number. \qquad

Use the partial-product method and multiplication square to solve.
3.) $\begin{gathered}26 \\ \downarrow \\ \downarrow\end{gathered} \times \begin{aligned} & 84 \\ & 30\end{aligned} \underline{\underline{80}}=\underline{2,400}$

$$
\begin{aligned}
1,600+80 & =1,680 \\
480+24 & =504 \\
1,680+504 & =2,184 \\
26 \times 84 & =\underline{2,184}
\end{aligned}
$$

Module MDWN
 Lesson 19
 Independent Practice Key

Use the base-10 picture to fill in the blanks and solve.

Use the base-10 picture to fill in the blanks and solve.
6.) .)

Estimate the answer to the problems below.
1.) $39 \times$ 6

\qquad
2.) 51×59
 $=$
3.) $55 \div 9$ or $n x$ \qquad $=$ \qquad

Multiples of 9: \qquad

Estimation: \qquad

$$
\div 9=
$$

$55 \div 9 \approx$ \qquad
4.) $321 \div 7$ or $n \times$ \qquad $=$ \qquad

Multiples of 7: \qquad

$312 \div 7 \approx$ \qquad

Estimate the answer to the problems below.
1.) 39×6

2.) 51×59

3.) $55 \div 9$ or $n \times \underline{9}=55$

Multiples of 9: $27,36,45,54,63$

Estimation: $\quad 54 \div 9=6$ $63 \div 9=7$
$55 \div 9 \approx 6$
4.) $321 \div 7$ or $n \times \underline{7}=\underline{321}$

Multiples of 7: 28, 35

Estimation: $\begin{array}{r}28 \div 7=4 \\ \hline 35 \div 7=5 \\ \hline\end{array}$

$$
312 \div 7 \approx \underline{50}
$$

Module MDWN

Lesson 20
Modeled Practice
1.) The Bulldogs basketball team scored 103 points at Thursday night's game. Most of the points scored were 2-point shots, only a few 1-point penalty shots were made, and the team made no 3-point shots that night. Estimate about how many 2-point shots the team could have made during the game.

Step 1.) What is the question asking you to find?	Step 2.) Which method will you use to solve?
Step 3.) How do you show your work?	Step 4.) Does your answer make sense?

2.) David Chapmen, the Pirates' best shooting guard, played amazingly in the basketball game last night. He made 17 3-point shots in one game. What were the total points David scored from his 3-point shots?

Step 1.) What is the question asking you to find?	Step 2.) Which method will you use to solve?
Step 3.) How do you show your work?	Step 4.) Does your answer make sense?

1.) The Bulldogs basketball team scored 03 points at Thursday night's game. Most of the points scored were 2-point shots only a few 1-point penalty shots were made, and the team made no 3-point shots that night. Estimate about how many 2-point shots the team could have made during the game.

Step 1.) What is the question asking you to find?	Step 2.) Which method will you use to solve?		
the number of 2-point shots			
the team scored		\quad	division or multiplication with a missing factor
:---:			
Step 3.) How do you show your work?			
$100 \div 2=50$			
Or $p \times 2=100$			
$p=50$		Step 4.) Does your answer make	
:---:			
sense?			
$50+50=100$			
100 is close to 103			

2.) David Chapmen, the Pirates' best shooting guard, played amazingly in the basketball game last night. He made 17 3-point shots in one game. What were the total points David scored from his 3-point shots?

Step 1.) What is the question asking you to find? total David scored from 3-point shots	Step 2.) Which method will you use to solve? multiplication 17×3
Step 3.) How do you show your work? $10 \times 3+7 \times 3$ $30+21$	Step 4.) Does your answer make sense? yes, close to my estimation

1.) The Wildcats football team scored 24 points at their last game. The team scored touchdowns worth 7 points and field goals worth 3 points each. What is the highest number of touchdowns the team could have made?

Step 1.) What is the question asking you to find?	Step 2.) Which method will you use to solve?
Step 3.) How do you show your work?	Step 4.) Does your answer make sense?

2.) The Mighty Mustangs scored 5 touchdowns at their last football game. Each touchdown earned the team 7 points. What was the total score for the Mustangs at the end of the game?

Step 1.) What is the question asking you to find?	Step 2.) Which method will you use to solve?
Step 3.) How do you show your work?	Step 4.) Does your answer make sense?

3.) For the baseball playoffs, 293 fans attended the first night, 302 fans attended the second night, 285 fans attended the third night, and 317 fans the fourth night. About how many fans attended the first 4 games during the playoffs?

Step 1.) What is the question asking you to find?	Step 2.) Which method will you use to solve?
Step 3.) How do you show your work?	Step 4.) Does your answer make sense?

4.) At the baseball playoff games 682 hotdogs were sold. If about the same number of hotdogs were sold at each of the 7 games, about how many hotdogs were sold per game?

Step 1.) What is the question asking you to find? Step 2.) Which method will you use to solve? Step 3.) How do you show your work?Step 4.) Does your answer make sense?

Interview Questions

1.) What do you think the question is asking you to find?
2.) Which method did you use to solve? Why?
3.) What are the strategy steps you followed?
4.) How did you estimate to check that your answer was reasonable?
5.) Do you think you answered the original question? Explain why you think so.
1.) The Wildcats football team scored 4 points at their last game. The team scored touchdowns worth points and field goals worth 3 points each. What is the highest number of touchdowns the team could have made?

Step 1.) What is the question asking you to find? the number of touchdowns made in the game	Step 2.) Which method will you use to solve? division or multiplication with missing factor
Step 3.) How do you show your work? $\begin{gathered} 24 \div 7 \quad n \times 7=24 \\ 3 \times 7=21 \\ 4 \times 7=28 \\ 24 \div 7 \approx 3 \end{gathered}$	Step 4.) Does your answer make sense? 3 touchdowns yes, it is possible in a game and $7 \times 3=21$

2.) The Mighty Mustangs scored 5 touchdownsat their last football game. Each touchdown earned the team (7 points. What was the total score for the Mustangs at the end of the game?

Step 1.) What is the question asking you to find? total score	Step 2.) Which method will you use to solve? multiplication 5×7
Step 3.) How do you show your work? $5 \times 7=35$ skip count by 5s	Step 4.) Does your answer make sense? yes, 35 points is reasonable

3.) For the baseball playoffs, 293 fans attended the first night, 302 fans attended the second night, 285 fans attended the third night, and 317 fans the fourth night. About how many fans attended the first 4 games during the playoffs?

Step 1.) What is the question asking you to find?
how many fans attended the 4 games

Step 2.) Which method will you use to solve?
estimate, addition, or multiplication

Step 3.) How do you show your work? $295 \approx 300 \quad 300 \times 4=1,200$ $302 \approx 300 \quad 300+300=600$
$285 \approx 300 \quad 300+300=600$
$317 \approx 300 \quad 600+600=1,200$

Step 4.) Does your answer make sense?
yes, 4 groups of 300 is 1,200
4.) At the baseball playoff games 682 hotdogs were sold. If about the same number of hotdogs were sold at each of the 7 games about how many hotdogs were sold per game?

Step 1.) What is the question asking you to find? about how many hotdogs were sold	Step 2.) Which method will you use to solve? division $682 \div 7$
Step 3.) How do you show your work? $\begin{aligned} & 682 \div 7 \quad 630 \div 7=90 \\ & 700 \div 7=100 \\ & 682 \div 7 \approx 100 \end{aligned}$	Step 4.) Does your answer make sense? 100 hotdogs yes $100 \times 7=700$ 700 is close to 682

Interview Questions answers may vary

1.) What do you think the question is asking you to find?
2.) Which method did you use to solve? Why?
3.) What are the strategy steps you followed?
4.) How did you estimate to check that your answer was reasonable?
5.) Do you think you answered the original question? Explain why you think so.
1.) A marathon runner ran a 26 -mile race. If she kept a pace of about 8 minutes for every mile, about how many minutes did it take her to finish the marathon?

Step 1.) What is the question asking you to find?	Step 2.) Which method will you use to solve?
Step 3.) How do you show your work?	Step 4.) Does your answer make sense?

2.) If a runner finished a marathon in 238 minutes, about how many hours was the runner running in the race? (Hint: remember 60 minutes $=1$ hour)

Step 1.) What is the question asking you to find?	Step 2.) Which method will you use to solve?
Step 3.) How do you show your work?	Step 4.) Does your answer make sense?

1.) A marathon runner ran a 26 -mile race. If she kept a pace of about 8 minutes for every mile, about now many minutes did it take her to finish the marathon?

Step 1.) What is the question asking you to find?	Step 2.) Which method will you use to solve?
how many minutes to finish	
the marathon	multiplication 26×8
Step 3.) How do you show your work?	
26×8	Step 4.) Does your answer make sense?
\downarrow	yes, estimated to find about about how many minutes;
$30 \times 8=240$	8 minutes 26 times is about 240
about 240 minutes	minutes.

2.) If a runner finished a marathon in 238 minutes about how manv hours was the runner running in the race? (Hint: remember 60 minutes $=1$ hour)

Step 1.) What is the question asking you to find? how many hours in 238 minutes	Step 2.) Which method will you use to solve? division, $238 \div 60$, and estimate
Step 3.) How do you show your work? $\begin{gathered} 238 \div 60 \quad 60 \times n=238 \\ 180 \div 60=3 \\ 240 \div 60=4 \\ 238 \div 60 \approx 4 \text { hours } \end{gathered}$	Step 4.) Does your answer make sense? $\text { yes, } 4 \times 60=240$ $238 \text { is close to } 240$

