Mathematics TEKS sUPPORTING INFORMATION

GRADE 6

The materials are copyrighted (c) and trademarked (tm) as the property of the Texas Education Agency (TEA) and may not be reproduced without the express written permission of TEA, except under the following conditions:

- Texas public school districts, charter schools, and education service centers may reproduce and use copies of the Materials and Related Materials for the districts' and schools' educational use without obtaining permission from TEA.
- Residents of the state of Texas may reproduce and use copies of the Materials and Related Materials for individual personal use only without obtaining written permission of TEA.
- Any portion reproduced must be reproduced in its entirety and remain unedited, unaltered and unchanged in any way.
- No monetary charge can be made for the reproduced materials or any document containing them; however, a reasonable charge to cover only the cost of reproduction and distribution may be charged.

Private entities or persons located in Texas that are not Texas public school districts, Texas education service centers, or Texas charter schools or any entity, whether public or private, educational or non-educational, located outside the state of Texas MUST obtain written approval from TEA and will be required to enter into a license agreement that may involve the payment of a licensing fee or a royalty.

For information contact
Office of Copyrights, Trademarks, License Agreements, and Royalties,
Texas Education Agency,
1701 N. Congress Ave., Austin, TX 78701-1494;
phone: 512-463-9041
email: copyrights@tea.texas.gov
©2015 Texas Education Agency All Rights Reserved 2015

Grade 6 - Mathematics

TEKS

Supporting Information
(a) Introduction
(1) The desire to achieve educational excellence is the driving force behind the Texas essential knowledge and skills for mathematics, guided by the college and career readiness standards. By embedding statistics, probability, and finance, while focusing on computational thinking mathematical fluency, and solid understanding, Texas will lead the way in mathematics education and prepare all Texas students for the challenges they will face in the 21st century.

The definition of a well-balanced mathematics curriculum has expanded to include the Texas College and Career Readiness Standards (CCRS). A focus on mathematical fluency and solid understanding allows for rich exploration of the primary focal points.
(a) Introduction
(2) The process standards describe ways in which students are expected to engage in the content. The placement of the process standards at the beginning of the knowledge and skills listed for each grade and course is intentional. The process standards weave the other knowledge and skills together so that students may be successful problem solvers and use mathematics efficiently and effectively in daily life. The process standards are integrated at every grade level and course. When possible, students will apply mathematics to problems arising in everyday life, society, and the workplace. Students will use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution. Students will select appropriate tools such as real objects, manipulatives, algorithms, paper and pencil, and technology and techniques such as mental math, estimation, number sense, and generalization and abstraction to solve problems. Students will effectively communicate mathematical ideas, reasoning, and their implications using multiple representations such as symbols, diagrams, graphs, computer programs, and language. Students will use mathematical relationships to generate solutions and make connections and predictions. Students will analyze mathematical relationships to connect and communicate mathematical ideas. Students will display, explain, or justify mathematical ideas and arguments using precise mathematical language in written or oral communication

(a) Introduction

(3) The primary focal areas in Grade 6 are number and operations; proportionality;
expressions, equations, and relationships; and measurement and data. Students use concepts, algorithms, and properties of rational numbers to explore mathematical relationships and to describe increasingly complex situations. Students use concepts of proportionality to explore develop, and communicate mathematical relationships. Students use algebraic thinking to describe how a change in one quantity in a relationship results in a change in the other. Students connect verbal, numeric, graphic, and symbolic representations of relationships, including equations and inequalities. Students use geometric properties and relationships, as well as spatial reasoning, to model and analyze situations and solve problems. Students communicate information about geometric figures or situations by quantifying attributes generalize procedures from measurement experiences, and use the procedures to solve problems. Students use appropriate statistics, representations of data, and reasoning to draw conclusions, evaluate arguments, and make recommendations. While the use of all types of technology is important, the emphasis on algebra readiness skills necessitates the implementation of graphing technology.
(a) Introduction.
(4) Statements that contain the word "including" reference content that must be mastered while those containing the phrase "such as" are intended as possible illustrative examples

This paragraph highlights specifics about grade 6 mathematics content and follows the paragraph about the mathematical process standards. This supports the notion that the TEKS should be learned in a way that integrates the mathematical process standards in an effort to develop fluency.

The State Board of Education approved the retention of some "such as" statements within the TEKS for clarification of content.

The phrases "including" and "such as" should not be considered as limiting factors for the student expectations (SEs) in which they reside.

Additional Resources are available online, including Interactive Mathematics Glossary Vertical Alignment Charts
Texas Response to the Curriculum Focal Points, Revised 2013
Texas Mathematics Resource Page

Grade 6 - Mathematics

TEKS: Mathematical Process Standards.

6(1)(A) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding.

The student is expected to apply mathematics to problems arising in everyday life, society, and the workplace.

6(1)(B) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding.

The student is expected to use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the

 solution, and evaluating the problem-solving process and the reasonableness of the solution.6(1)(C) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding.

The student is expected to select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, pencil, and technology as appropriate, and techniques, including
estimation, and number sense as appropriate, to solve problems.
$6(1)(\mathrm{D})$ Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding.

The student is expected to communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate.

6(1)(E) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding.

The student is expected to create and use representations to organize, record, and communicate mathematical ideas.

6(1)(F) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding.

The student is expected to analyze mathematical relationships to connect and communicate mathematical ideas.
$6(1)(G)$ Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding.

The student is expected to display, explain, and justify mathematical ideas and arguments using precise mathematical language in written or oral communication.

Supporting Information

This SE emphasizes application.
The opportunities for application have been consolidated into three areas: everyday life, society, and the workplace.

This SE, when paired with a content SE, allows for increased rigor through connections outside the discipline.

This SE describes the traditional problem-solving process used in mathematics and science.
Students are expected to use this process in a grade-appropriate manner when solving problems that can be considered difficult relative to mathematical maturity.

The phrase "as appropriate" is included in the TEKS. This implies that students are assessing which tool(s) to apply rather than trying only one or all accessible tools.

Communication includes the implications of mathematical ideas and reasoning

The list of representations is summarized with "multiple representations" with specificity added for symbols, graphs, and diagrams.

The use of representations includes organizing and recording mathematical ideas in addition to communicating ideas.

As students use and create representations, it is implied that they will evaluate the effectiveness of their representations to ensure that they are communicating mathematical ideas clearly.

Students are expected to use appropriate mathematical vocabulary and phrasing when communicating mathematical ideas.
The TEKS allow for additional means to analyze relationships and to form connections with mathematical ideas beyond forming conjectures about generalizations and sets of examples and non-examples.

Students are expected to form conjectures based on patterns or sets of examples and nonexamples.
The TEKS expect students to validate their conclusions with displays, explanations, and justifications. The conclusions should focus on mathematical ideas and arguments.

Displays may include diagrams, visual aids, written work, etc. The intention is to make one's work visible to others so that explanations and justifications may be shared in written or oral form.
Precise mathematical language is expected. For example, students would use "natural numbers" instead of "counting numbers" when referring to the numbers $\{1,2,3,4,5 \ldots\}$.

Grade 6 - Mathematics

TEKS: Number and Operations.

6(2)(A) Number and operations. The student applies mathematical process standards to represent and use rational numbers in a variety of forms.

The student is expected to classify whole numbers, integers, and rational numbers using a visual representation such as a Venn diagram to describe relationships between sets of numbers.

6(2)(B) Number and operations. The student applies mathematical process standards to represent and use rational numbers in a variety of forms

The student is expected to identify a number, its opposite, and its absolute value.

$6(2)(C)$ Number and operations. The student applies mathematical process standards to represent and use rational numbers in a variety of forms.

The student is expected to locate, compare, and order integers and rational numbers using a number line.
6(2)(D) Number and operations. The student applies mathematical process standards to represent and use rational numbers in a variety of forms.

The student is expected to order a set of rational numbers arising from mathematical and real-world contexts.
$6(2)(E)$ Number and operations. The student applies mathematical process standards to represent and use rational numbers in a variety of forms.

The student is expected to extend representations for division to include fraction notation such as a / b represents the same number as $a \div b$ where $b \neq 0$.

Supporting Information

A Venn diagram is an applicable visual representation as the SE focuses on classification of numbers.

As there is no unified definition for these terms, the natural numbers will be taken to mean $\{1,2$, $3 \ldots\}$, and the whole numbers will be taken to mean $\{0,1,2,3 \ldots\}$.
A Venn diagram may be nested or not

or other objects could be used.

This SE may be used to introduce the concept of integers with the identification of a number, its opposite, and its absolute value.

When $6(2)(B)$ is paired with $6(1)(A)$, students may be expected to apply the skill of identifying integers in everyday life.

The SE includes the use of the absolute value symbol and the formal mathematics vocabulary as students identify a number and its opposite as being the same distance from zero, or having the same absolute value.

The term "opposite" refers to the additive inverse of a number
Comparing and ordering of rational numbers includes integers and negative rational numbers.
The SE includes the number line as a tool for locating, comparing, and ordering integers and rational numbers.

The SE continues the ordering of rational numbers from $5(2)(B)$
The SE extends the ordering of rational numbers to include integers and negative rational numbers. A mathematical context can be numbers or values without an application.

Students have seen fraction notation with whole number values when writing expressions and equations. This SE includes the understanding that one can divide the numerator of a fraction by its denominator to yield a decimal equivalent.

This extends the notion that $4 / 4=1,5 / 4=1 / 4$ or $1.25,6 / 4=12 / 4$ or 1.5 , etc. to thinking about $1 / 4$ as 0.25 using the standard algorithm for division to yield the same result as converting $1 / 4$ into a fraction with a denominator of 100 .

Grade 6 - Mathematics

TEKS: Number and Operations

Supporting Information

6(3)(A) Number and operations. The student applies mathematical process standards to represent addition, subtraction, multiplication, and division while solving problems and justifying solutions.

The student is expected to recognize that dividing by a rational number and multiplying by its reciprocal result in equivalent values.
$6(3)(B)$ Number and operations. The student applies mathematical process standards to represent addition, subtraction, multiplication, and division while solving problems and justifying solutions.

The student is expected to determine, with and without computation, whether a quantity is increased or decreased when multiplied by a fraction, including values greater than or less than one.

6(3)(C) Number and operations. The student applies mathematical process standards to represent addition, subtraction, multiplication, and division while solving problems and justifying solutions.

The student is expected to represent integer operations with concrete models and connect the actions with the models to standardized algorithms.

6(3)(D) Number and operations. The student applies mathematical process standards to represent addition, subtraction, multiplication, and division while solving problems and justifying solutions.

The student is expected to add, subtract, multiply, and divide integers fluently.
$6(3)(E)$ Number and operations. The student applies mathematical process standards to represent addition, subtraction, multiplication, and division while solving problems and justifying solutions.

The student is expected to multiply and divide positive rational numbers fluently.

This SE builds to 6(3)(E) by laying a foundation for algorithms for fraction multiplication and division.

This SE builds to 6(3)(E) and supports the combination of fluent computation in 6(3)(E) and estimation in 6(1)(C).

Students may be asked to compare the factors and the related product.

This SE introduces students to operations with negative numbers and is associated with 6(3)(D).
Examples of concrete models could include two color counters, positive/ negative chips, or number lines.

For example, $-3+6$ can be represented by

This SE introduces students to operations with negative numbers and is associated with 6(3)(C).

Students continue to work with multiplication and division of rational numbers
Ratios and rates are related to rational number concepts.
The SE $6(3)(E)$ expects students to multiply and divide positive fractions and decimal values fluently. This SE builds on the skills from grade $5[5(3)(\mathrm{D})-(\mathrm{G}), 5(3)(\mathrm{I}), 5(3)(\mathrm{J})$, and $5(3)(\mathrm{L})]$.

TEKS: Proportionality.

6(4)(A) Proportionality. The student applies mathematical process standards to develop an understanding of proportional relationships in problem situations.

The student is expected to compare two rules verbally, numerically, graphically, and symbolically in the form of $\boldsymbol{y}=a x$ or $y=x+a$ in order to differentiate between additive and multiplicative relationships.
$6(4)(B)$ Proportionality. The student applies mathematical process standards to develop an understanding of proportional relationships in problem situations.

The student is expected to apply qualitative and quantitative reasoning to solve prediction and comparison of real-world problems involving ratios and rates.

6(4)(C) Proportionality. The student applies mathematical process standards to develop an understanding of proportional relationships in problem situations.

The student is expected to give examples of ratios as multiplicative comparisons of two quantities describing the same attribute.
6(4)(D) Proportionality. The student applies mathematical process standards to develop an understanding of proportional relationships in problem situations.

The student is expected to give examples of rates as the comparison by division of two quantities having different attributes, including rates as quotients.
6(4)(E) Proportionality. The student applies mathematical process standards to develop an understanding of proportional relationships in problem situations.

The student is expected to represent ratios and percents with concrete models, fractions, and decimals.
6(4)(F) Proportionality. The student applies mathematical process standards to develop an 6(4)(F) Proportionality. The student applies mathematical proce
understanding of proportional relationships in problem situations.

The student is expected to represent benchmark fractions and percents such as 1%, $\mathbf{1 0 \%}, \mathbf{2 5 \%}, 331 / 3 \%$, and multiples of these values using 10 by 10 grids, strip diagrams, number lines, and numbers.
6(4)(G) Proportionality. The student applies mathematical process standards to develop an understanding of proportional relationships in problem situations.

The student is expected to generate equivalent forms of fractions, decimals, and percents using real-world problems, including problems that involve money.
6(4)(H) Proportionality. The student applies mathematical process standards to develop an understanding of proportional relationships in problem situations.

The student is expected to convert units within a measurement system, including the use of proportions and unit rates.

Supporting Information

The algebraic representations should be in the form $y=a x$ or $y=x+a$.
The SE 6(4)(A) is a building block for $y=m x+b$ in 7(7)(A), 8(5)(A), 8(5)(B), and 8(5)(I). Students are expected to graph these relationships.

Students are expected to compare two rules to differentiate between additive and multiplicative representations. This is a building block for work with proportional and non-proportional situations in grades $8[8(5)(F)$ and $(H)]$.
The description of the proportional situations includes prediction in situations with missing values and comparisons that involve ratios and rates.

Quantitative reasoning focuses on the relationships between and within equivalent ratios.
When given two ratios a / b and e / f, qualitative reasoning involves considering $a / b=c$ and $e / f=g$ and how qualitative changes in a or b and e or f affect c and g and how these qualitative changes affect comparisons of c and g. For example, the ratio of lemon juice to water for Maria's lemonade is 3 T of lemon juice to 3 cups of water. The simplified $c=1$ describes how "lemony" her lemonade is. The ratio e/f $=4 / 4$ describes the ratio of lemon juice (4 T) to water (1 qt or 4 C) for Mark's lemonade. The simplified $g=1$ describes how "lemony" his lemonade is. If Maria's and Mark's lemonades have the same amount of "lemony" flavor, what happens if Maria adds lemons? What if she adds lemons and water?
This SE lays the groundwork for proportional reasoning elsewhere in grades 6 and 7 .
This SE specifies the comparison of the same attribute for two different objects, sets, or other quantities such as length, mass, etc.

This SE specifies that the comparison of the different attributes may be for a single object, set, or situation. This SE may be used as building block to unit rates elsewhere in grade 6 and the rate of change in grade 7 [7(4)(A)-(E)].

Percents may be represented by improper fractions or mixed numbers when comparing parts to the whole.

Ratios may be represented by improper fractions when comparing parts to the whole or the comparison of two mixed numbers or a mixed number to one.

Specificity includes percent benchmarks and models.
"Such as" refers to a few examples of possible benchmark fractions and is not limited to the benchmark fractions that are listed within the SE.

Ideas related to percent have been grouped together under the Proportionality strand.
When the SE is paired with the $6(1)(A)$, the expectation is that students order numbers arising from mathematical and real-world contexts, including those involving money.

The focus is on the use of proportions, equivalent ratios, and unit rates. Multiple conversions may be used, such as converting cups to pints to quarts to gallons.

Districts may decide to use this SE to introduce dimensional analysis.
The measurement systems are the customary and metric systems.

Grade 6 - Mathematics

TEKS: Proportionality.

(5)(A) Proportionality. The student applies mathematical process standards to solve problems involving proportional relationships.

The student is expected to represent mathematical and real-world problems involving ratios and rates using scale factors, tables, graphs, and proportions.

6(5)(B) Proportionality. The student applies mathematical process standards to solve problems involving proportional relationships.

The student is expected to solve real-world problems to find the whole given a part and the percent, to find the part given the whole and the percent, and to find the percent given the part and the whole, including the use of concrete and pictorial models.
$6(5)(C)$ Proportionality. The student applies mathematical process standards to solve problems
involving proportional relationships. involving proportional relationships.

The student is expected to use equivalent fractions, decimals, and percents to show equal parts of the same whole.

Supporting Information

his SE focuses on proportional relationships. Specificity includes scale factors. Students are expected to graph these relationships.

Ratios may be represented as percents to reinforce the skills under this knowledge and skill statement This extends the ideas in 6(4)(E)

Concrete and pictorial models include strip diagrams.
The parts and the percents are less than the whole. For example, a student may determine the amount of tax for a given item. However, the student would not be expected to determine the pre-tax price of an item given the sales tax rate and the post-tax price. Additionally, students may be asked to determine both the amount of discount and the sales price

This SE builds to percent increase and percent decrease in 7(4)(D)

The equivalent values should be used to describe the same whole.
The equivalent values may be greater than one.

Grade 6 - Mathematics

TEKS: Expressions, Equations, and Relationships.

6(6)(A) Expressions, equations, and relationships. The student applies mathematical process standards to use multiple representations to describe algebraic relationships.

The student is expected to identify independent and dependent quantities from tables and graphs.
6(6)(B) Expressions, equations and relationships. The student applies mathematical process standards to use multiple representations to describe algebraic relationships.

The student is expected to write an equation that represents the relationship between independent and dependent quantities from a table.
$6(6)(C)$ Expressions, equations and relationships. The student applies mathematical process standards to use multiple representations to describe algebraic relationships.

The student is expected to represent a given situation using verbal descriptions, tables, graphs, and equations in the form $y=k x$ or $y=x+b$.

Supporting Information

This SE extends $5(8)(C)$, which includes an input-output table, which implies independent and dependent quantities.
The tables and graphs may be labeled with the related quantities.
The SE extends $5(8)(C)$ with an equation from an input-output table.
The linear relationships will be represented with a table of paired values.
This SE builds on $6(4)(A)$ and is a building block for $7(7)(A), 8(5)(A), 8(5)(B)$, and $8(5)(I)$.
Students are expected to graph these relationships.
This SE focuses upon two-variable equations. One-variable equations are the subject of 6(9)(C).

TEKS: Expressions, Equations, and Relationships.

6(7)(A) Expressions, equations, and relationships. The student applies mathematical process standards to develop concepts of expressions and equations.

The student is expected to generate equivalent numerical expressions using order of operations, including whole number exponents and prime factorization.

6(7)(B) Expressions, equations, and relationships. The student applies mathematical process standards to develop concepts of expressions and equations.

The student is expected to distinguish between expressions and equations verbally, numerically, and algebraically.

6(7)(C) Expressions, equations, and relationships. The student applies mathematical process standards to develop concepts of expressions and equations.

The student is expected to determine if two expressions are equivalent using concrete models, pictorial models, and algebraic representations.
6(7)(D) Expressions, equations, and relationships. The student applies mathematical process standards to develop concepts of expressions and equations.

The student is expected to generate equivalent expressions using the properties of operations: inverse, identity, commutative, associative, and distributive properties.

Supporting Information

"Generate equivalent numerical expressions" is synonymous to "simplify." For example,
$|2-5|+3=3+3$ or $\frac{|-7+5|+6}{4}=2$.
Students are expected to understand that each step in the simplifying process generates an equivalent expression.

Exponents may only be whole numbers. Bases, however, have no limitation.
Students have previously been exposed to the terms "expressions" and "equations." This SE makes the distinction explicit. Verbally, students are expected to explain that equations are sentences that state that two things are equal. An expression is a phrase that represents a single value.

If an equation contains an unknown, it may be proven true or false by replacing the unknown with a number. If an expression contains a variable, the expression may represent different numbers depending on the value assigned to the variable.

An equation includes an equal sign.
For this SE, expressions may be entirely numeric or a mixture of numbers and one variable
The order of operations and properties of operations may be applied to determine if the two expressions are equivalent.

This SE may include the combining of like terms.

For this SE, expressions may be entirely numeric or a mixture of numbers and one variable.

Grade 6 - Mathematics

TEKS: Expressions, Equations, and Relationships.

Supporting Information

(8)(A) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to represent relationships and solve problems.

The student is expected to extend previous knowledge of triangles and their properties to include the sum of angles of a triangle, the relationship between the lengths of sides and measures of angles in a triangle, and determining when three lengths form a
triangle. standards to use geometry to represent relationships and solve problems.

The student is expected to model area formulas for parallelograms, trapezoids, and triangles by decomposing and rearranging parts of these shapes.

This SE builds on the classification of triangles [4(6)(C)] and the addition of angles [4(7)(E)] in grade 4.
Students may be expected to write and solve one-step, one-variable equations.
Lengths may be decimals or fractions to reinforce arithmetic skills of this and prior grades. Specificity is included regarding the development of formulas.

Three possible techniques that model the area formula for a trapezoid are shown below.
I. Use two congruent trapezoids to form a parallelogram. This parallelogram has area of $\left(b_{1}+b_{2}\right) h$, so the area of one trapezoid would be $1 / 2\left(b_{1}+b_{2}\right) h$.

II. Divide the trapezoid with a line segment parallel to both bases and halfway between each. Rotate one of these pieces to form a parallelogram with a length of $b_{1}+b_{2}$ and a width of $1 / 2 h$. As such the area of the parallelogram and hence the trapezoid would be $1 / 2\left(b_{1}+b_{2}\right) h$.

III. Divide the trapezoid using a diagonal to form two triangles. The area of one triangle would be $1 / 2 b_{1} h$, and the area of the second triangle would be $1 / 2 b_{2} h$, so the area of the trapezoid would be $1 / 2 b_{1} h+1 / 2 b_{2} h=1 / 2\left(b_{1}+b_{2}\right) h$.

b_{2}

Other techniques may exist.

Grade 6 - Mathematics

$6(8)(C)$ Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to represent relationships and solve problems.

The student is expected to write equations that represent problems related to the area of rectangles, parallelograms, trapezoids, and triangles and volume of right rectangular prisms where dimensions are positive rational numbers.
$6(8)(D)$ Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to represent relationships and solve problems.

The student is expected to determine solutions for problems involving the area of rectangles, parallelograms, trapezoids, and triangles and volume of right rectangular prisms where dimensions are positive rational numbers.
$6(9)(A)$ Expressions, equations, and relationships. The student applies mathematical process standards to use equations and inequalities to represent situations.

The student is expected to write one-variable, one-step equations and inequalities to represent constraints or conditions within problems.

6(9)(B) Expressions, equations, and relationships. The student applies mathematical process standards to use equations and inequalities to represent situations.

The student is expected to represent solutions for one-variable, one-step equations and inequalities on number lines.
6(9)(C) Expressions, equations, and relationships. The student applies mathematical process standards to use equations and inequalities to represent situations.

The student is expected to write corresponding real-world problems given one-variable, one-step equations or inequalities.

Supporting Information
When this SE is paired with $6(1)(D)$ and $6(1)(G)$, students may use tables to generate equations as appropriate to the problem

The dimensions may be positive rational numbers.

This SE builds to 7(9)(C), where students find the area of composite figures, and 7(9)(D), where students determine surface area

Dimensions may be positive rational numbers

Supporting Information

Problems may come from everyday life, society, and the workplace, including the application of mathematical concepts such as measurement

Equations and inequalities may include integers and positive rational number coefficients and constants.

This $S E$ is related to $6(10)(A)$ and $6(10)(B)$.
This SE is a building block for one-variable, two-step equations and inequalities [7(10)(A)].
The SE includes inequalities. Constraints or conditions may be indicated by words such as "minimum" or "maximum."

Students may need to determine if the value in the solution is part of the solution set or not.
This SE is a building block for one-variable, two-step equations and inequalities [7(10)(B)].
Students may need to determine if the value in the solution is part of the solution set or not.

This SE is a building block for writing corresponding real-world problems given one-variable, twostep equations and inequalities [7(10)(C)]

This student expectation is the inverse of 6(9)(A).

TEKS: Expressions, Equations, and Relationships

$6(10)(A)$ Expressions, equations, and relationships. The student applies mathematica process standards to use equations and inequalities to solve problems

The student is expected to model and solve one-variable, one-step equations and inequalities that represent problems, including geometric concepts.

6(10)(B) Expressions, equations, and relationships. The student applies mathematica process standards to use equations and inequalities to solve problems

The student is expected to determine if the given value(s) make(s) one-variable, onestep equations or inequalities true.

Supporting Information

Equations and inequalities may include integers and positive rational number coefficients and constants

This SE is a building block for one-variable, two-step equations and inequalities with $7(11)(A)$ as well as $7(11)(C)$ and may include concepts developed in 6(8)(A) and 4(7)(E) as contexts.

Geometric concepts may include complementary and supplementary angles
This SE makes explicit the meaning of a solution to an equation or an inequality.
This SE is a building block for one-variable, two-step equations and inequalities in $7(11)(B)$.
Students may need to determine if the value in the solution is part of the solution set or not

Supporting Information

Students will graph ordered pairs of rational numbers.
The SE 6(11) extends to graphing ordered pairs of rational numbers in all four quadrants from

6(11) Measurement and data. The student applies mathematical process standards to use coordinate geometry to identify locations on a plane.

The student is expected to graph points in all four quadrants using ordered pairs of rational numbers.

5(8)(C).

The quadrants may be numbered beginning with I, which includes positive x and y-values (see $5(8)(C)$), and are numbered counterclockwise.

Supporting Information

Students will represent data using stem-and-leaf plots.
$6(12)(A)$ Measurement and data. The student applies mathematical process standards to use numerical or graphical representations to analyze problems.

The student is expected to represent numeric data graphically, including dot plots, stem-and-leaf plots, histograms, and box plots.

When $6(12)(A)$ is paired with the mathematical process standards, students are expected to select and use an appropriate representation to communicate and justify mathematical relationships

Representing and drawing conclusions with data, which includes interpreting data, are located in the following grades:

- Dot plots: grades 3,4, 5
- Stem-and-leaf plots: grades 4,5
- Bar graphs: grades 2,3,5

The use of histograms and box plots begins in grade 6 .
While students will continue to describe the center (median and mean) and spread (range), they will do so based on a graphical representation of numeric data rather than from a list of numeric data.

Students are expected to describe the shape (affected by mean, median, mode, and range) based on a graphical representation.

Some descriptive words include, but are not limited to, outlier, symmetrical, clustered, skewed, and peak.

This student expectation focuses on numeric data and its related measures: mean, median, range, and interquartile ranges.

An outlier does not describe the numerical summary, although it may alter the relationship between the mean and median as well as the relationship between the range and IQR.
his student expectation focuses on categorical data and its related measures: mode and relative frequencies.

The focus is on the percent bar graph instead of the circle graph. This connects the use of strip diagrams to represent and solve problems related to percents with the relative frequency table.

Categories can be numerical and are determined by context. For example, when measuring time months are numeric. However, when considering how many times something occurs in each month, such as doctor visits, months may be categorical.

Grade 6 - Mathematics

TEKS: Measurement and Data.

Supporting Information

Representing and drawing conclusions with data, which includes interpreting data, is located in the following grades:

- Dot plots: grades 3, 4, 5
-Stem-and-leaf plots: grades 4,5
- Bar graphs: grades 2, 3, 5

The student is expected to interpret numeric data summarized in dot plots, stem-andleaf plots, histograms, and box plots.

The use of histograms and box plots begins in grade 6.
Data from a single individual subject that may be or has been recorded at a single time has no variability. Once recorded, that data point becomes fixed. However, data that may be recorded at different times or days may be variable. Also, variability may occur as data is recorded at a single time from many subjects. Variability is dependent upon the given context
6(13)(B) Measurement and data. The student applies mathematical process standards to use numerical or graphical representations to solve problems.

The student is expected to distinguish between situations that yield data with and without variability.

For example, the question "How many students are in class at 9:45 a.m. on April 23, 2013?" will be answered with a single number and hence will be without variability. However, the question "How many students are in class each day?" will be answered based on the daily attendance numbers, which may vary.

This SE lays the foundation for mean absolute deviation, $8(11)(B)$, which is a measure of variability for quantitative data.

6(14)(A) Personal financial literacy. The student applies mathematical process standards to develop an economic way of thinking and problem solving useful in one's life as a knowledgeable consumer and investor.

The student is expected to compare the features and costs of a checking account and a debit card offered by different local financial institutions.
6(14)(B) Personal financial literacy. The student applies mathematical process standards to develop an economic way of thinking and problem solving useful in one's life as a knowledgeable consumer and investor.

The student is expected to distinguish between debit cards and credit cards.

6(14)(C) Personal financial literacy. The student applies mathematical process standards to develop an economic way of thinking and problem solving useful in one's life as a knowledgeable consumer and investor.

The student is expected to balance a check register that includes deposits, withdrawals, and transfers.
6(14)(D) Personal financial literacy. The student applies mathematical process standards to develop an economic way of thinking and problem solving useful in one's life as a knowledgeable consumer and investor

The student is expected to explain why it is important to establish a positive credit

history.

6(14)(E) Personal financial literacy. The student applies mathematical process standards to develop an economic way of thinking and problem solving useful in one's life as a knowledgeable consumer and investor.

The student is expected to describe the information in a credit report and how long it is retained.
6(14)(F) Personal financial literacy. The student applies mathematical process standards to develop an economic way of thinking and problem solving useful in one's life as a knowledgeable consumer and investor.

The student is expected to describe the value of credit reports to borrowers and to

 lenders.6(14)(G) Personal financial literacy. The student applies mathematical process standards to develop an economic way of thinking and problem solving useful in one's life as a knowledgeable develop an economic wa
consumer and investor.

The student is expected to explain various methods to pay for college, including through savings, grants, scholarships, student loans, and work-study.
6(14)(H) Personal financial literacy. The student applies mathematical process standards to develop an economic way of thinking and problem solving useful in one's life as a knowledgeable consumer and investor.

The student is expected to compare the annual salary of several occupations requiring various levels of post-secondary education or vocational training and calculate the effects of the different annual salaries on lifetime income.

Features may include interest and other incentives
Costs may include monthly fees, activation fees, or overdraft fees.

This SE builds upon $5(10)(C)$ where students are expected to identify the advantages and disadvantages of different methods of payment, including check, credit card, debit card, and electronic payments.

Transfers may be deposits or withdrawals

This SE also provides the foundation for $7(13)(C)$ where students are expected to create and organize a financial assets and liabilities record and construct a net worth statement.

This SE develops the background information for 8(12)(A), 8(12)(B), and 8(12)(E), where students are expected to solve real-world problems comparing how interest rate and loan length students are expected to solve real-world problems comparing how interest rate and loan length
affect the cost of credit; calculate the total cost of repaying a loan, including credit cards and easy access loans, under various rates of interest and over different periods using an online calculator; and identify and explain the advantages and disadvantages of different payment methods respectively.
This SE develops the background information for $8(12)(A), 8(12)(B)$, and $8(12)(E)$, where students are expected to solve real-world problems comparing how interest rate and loan length affect the cost of credit; calculate the total cost of repaying a loan, including credit cards and easy
access loans, under various rates of interest and over different periods using an online calculator; and identify and explain the advantages and disadvantages of different payment methods respectively.
This SE develops the background information for $8(12)(A), 8(12)(B)$, and $8(12)(E)$, where students are expected to solve real-world problems comparing how interest rate and loan length affect the cost of credit; calculate the total cost of repaying a loan, including credit cards and easy access loans, under various rates of interest and over different periods using an online calculator; and identify and explain the advantages and disadvantages of different payment methods respectively.

This SE builds to $8(12)(C)$ and $8(12)(G)$, which discuss saving and college planning

This SE builds upon $5(10)(B)$, where students are expected to explain the difference between gross income and net income, and can be used to develop budgets as described in 7(13)(B), where students are expected to identify the components of a personal budget, including income; planned savings for college, retirement, and emergencies; taxes; and fixed and variable expenses, and calculate what percentage each category comprises of the total budget, and $7(13)(D)$, where students are expected to use a family budget estimator to determine the minimum household budget and average hourly wage needed for a family to meet its basic needs in the student's city budget and average hourly w
or another large city nearby.

